Worcester Polytechnic Institute Digital WPI

Masters Theses (All Theses, All Years)

Electronic Theses and Dissertations

2004-05-03

A Comparative Analysis of the Biomechanics and Biochemistry of Cell-Derived and Cell-Remodeled Matrices: Implications for Wound Healing and Regenerative Medicine

Jan-Eric Wilhelm Ahlfors Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

Repository Citation

Ahlfors, Jan-Eric Wilhelm, "A Comparative Analysis of the Biomechanics and Biochemistry of Cell-Derived and Cell-Remodeled Matrices: Implications for Wound Healing and Regenerative Medicine" (2004). Masters Theses (All Theses, All Years). 682. https://digitalcommons.wpi.edu/etd-theses/682

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

A Comparative Analysis of the Biomechanics and Biochemistry of Cell-Derived and Cell-Remodeled Matrices: Implications for Wound Healing and Regenerative Medicine

A Master's Thesis

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

By

Jan-Eric Ahlfors April, 2004

Approved:

Prof. Kristen Billiar Thesis Advisor Prof. Daniel Gibson Committee Member Prof. George Pins Committee Member

ABSTRACT

The purpose of this research was to study the synthesis and remodeling of extracellular matrix (ECM) by fibroblasts with special emphasis on the culture environment (media composition and initial ECM composition) and the resulting mechanical integrity of the ECM. This was investigated by culturing fibroblasts for 3 weeks in a variety of culture conditions consisting of collagen gels, fibrin gels, or media permissive to the self-production of ECM (Cell-Derived Matrix), and quantifying the mechanics of the resulting ECM. The mechanical characteristics were related to the biochemistry of the resulting ECM, notably in terms of collagen accumulation and collagen fibril diameters. The ultimate tensile strength (UTS) of the collagen gels and fibrin gels at the end of the 3-week period was 168.5 ± 43.1 kPa and 133.2 ± 10.6 kPa. respectively. The ultimate tensile strength of the cell-derived matrices was 223.2 ± 9 kPa, and up to 697.1 ± 36.1 kPa when cultured in a chemically-defined medium that was developed for the rapid growth of matrix in a more defined environment. Normalizing the strength to collagen density resulted in a UTS / Collagen Density in these groups of $6.4 \pm$ 1.9 kPa/mg/cm^3 , $25.9 \pm 2.4 \text{ kPa/mg/cm}^3$, $14.5 \pm 1.1 \text{ kPa/mg/cm}^3$, and 40.0 ± 1.9 kPa/mg/cm³, respectively. Cells were synthetically more active when they produced their own matrix than when they were placed within gels. The resulting matrix was also significantly stronger when it was self-produced than when the cells rearranged the matrix within gels that corresponded to a significantly larger fraction of non-acid and pepsin extractable collagen. These studies indicate that cell-derived matrices have potential both as *in vitro* wound healing models and as soft connective tissue substitutes.

TABLE OF CONTENTS

	Page:
Signature Page	1
Abstract	2
Table of Contents	3
Thesis Objectives	4
Introduction	6
Materials and Methods:	
Cells	8
Standard Serum-Supplemented Medium	9
Collagen Gel, Fibrin Gel, and Cell-Derived Matrix Preparation	9
Chemically-Defined Media	11
Mechanical Testing	13
Biochemical Analysis	15
Histology and Transmission Electron Microscopy	17
Statistics	18
Results	19
Discussion	33
References	43
Appendix 1: Cell-Derived Matrix Protocol	54
Appendix 2: Biomechanical Analysis Protocol	47
Appendix 3: Biochemical Analysis Protocol	61
Appendix 4: Steps in Development of Chemically-Defined Medium	65
Appendix 5: One-Way Anova and Tukey HSD Post Hoc Statistical Analysis	90
Appendix 6: Arrangement of Collagen in Cell-Derived Matrices	96

Thesis Objectives

The purpose of this Master's Thesis was to study the synthesis and remodeling of extracellular matrix (ECM) by fibroblasts with special emphasis on the culture environment (media composition and initial ECM composition) and the resulting mechanical integrity of the ECM. This was investigated by culturing fibroblasts for 3 weeks in a variety of culture conditions consisting of collagen gels, fibrin gels, or media permissive to the self-production of ECM, and quantifying the mechanics of the resulting ECM. The mechanical characteristics were related to the biochemistry of the resulting ECM, notably in terms of collagen accumulation and collagen fibril diameters. The hypothesis was: Cell-derived matrices (CDMs) are stronger than fibroblast populated collagen gels and fibroblast populated fibrin gels due to a greater collagen density and fibril diameter of the self-produced collagen in the CDM. To accurately determine these differences, all groups were grown in parallel with the same number and type of cells, fed with the same media at the same frequency, started and grown for the same period of time, grown next to each other on the same 6-well plates, and overall maintained in the same environment.

Due to the slow growth and development of self-produced ECM, a method of quickly growing strong and thick cell-derived matrices *in vitro* was developed. This involved seeding low passage cells at "superconfluent" densities, or densities where the cells were stacked next to and top of each other, on TransWellsTM and feeding the constructs with a chemically-defined medium that was developed. The components and their individual concentrations in this chemically-defined medium were chosen according

to whether they significantly increased the thickness and/or strength of cell-derived matrices. The relatively few components in this chemically-defined medium aided in gaining insight into the effects of these components on the growth and strengthening of cell-derived matrices. This provided insight into how different nutritional components influence the mechanisms of growth and strengthening of cell-derived matrices.

Introduction

Living tissue equivalents (LTE), notably cell-seeded collagen and fibrin gels, have been used extensively as *in vitro* wound-healing models as well as models for tissue remodeling (for review see (Grinnell, 2003)). More recently, tissue-equivalents have also started to gain considerable attention as replacements for lost or damaged connective tissue (e.g., ApligrafTM from Organogenesis, Inc.). Living tissue-equivalents have several advantages over synthetic alternatives including being a natural cell substrate, allowing cellularity to be achieved directly, and being conducive to cell spreading and extracellular matrix (ECM) formation (Neidert *et al.*, 2002).

Over the last two decades, models of fibroplasia that are completely cell-derived have also been developed. This has allowed the study of tissue formation solely from cells *in vitro*. Several research groups have demonstrated that, given a permissive environment, fibroblasts can be induced to produce a thin, 3-dimensional sheet of extracellular matrix material *in vitro* (Grinnell *et al.*, 1989; Clark *et al.*, 1997; Ishikawa *et al.*, 1997; L'Heureux *et al.*, 1998; Ohgoda *et al.*, 1998). These cell-derived matrices (CDM) are produced by slowly proliferating multilayered fibroblasts that become surrounded by the dense extracellular matrix that is composed in large part by supermolecularly organized collagen (Grinnell *et al.*, 1989; Ishikawa *et al.*, 1997). The fibroblasts in this self-produced environment assume a synthetic phenotype (Kessler *et al.*, 2001) characterized by low cell proliferation, high collagen accumulation, fibrillar fibronectin organization, and the formation of actin stress fibers and focal adhesions.

Although the biological and biochemical characteristics of these matrices have been studied to some extent, little is known about their mechanical characteristics and how it relates to the biochemical composition of these materials. From studies by Clark et al. (1997) and L'Heureux et al. (1998), their structure and composition appears to more closely approximate native tissue than "reconstituted" ECM (e.g., collagen gels). Indeed, Auger and colleagues (1998) have demonstrated significantly higher burst strength of completely biological human blood vessel equivalents (L'Heureux et al., 1998) produced by laminating several of these "self-assembled matrices" into a tubular geometry than has been obtained with collagen or fibrin tubes. Preliminary studies of linear "tendon equivalents" produced using this technology also indicate that these cell-derived matrices have strengths approaching native tissues (Calve et al., 2003). Tissue equivalents of high strength, such as CDMs, are in high demand since current shortages of load-bearing tissue has created a need for man-made tissues that can withstand in vivo mechanical forces (Gildner and Hocking, 2003). As with native connective tissues, the mechanics of CDM produced *in vitro* depends not only on the features of individual cells and matrix molecules, but also on the complex organizational and reciprocal interactions of collections of cells and their surrounding matrix (Grinnell, 2003). The biochemical composition and arrangement of the ECM by fibroblasts influence the mechanical characteristics of the ECM. Thus, CDM provides a powerful tool for studying the functional (mechanical) outcomes of these cell-matrix interactions in a controlled environment has similarities to *in vivo* fibroplasia and the early stages of wound-healing. However, a major limitation of CDMs is that they are very thin and take a long time to

grow, generally in the order of months (Auger *et al.*, 2000), whereas collagen gels and fibrin gels can be developed in only a few days (Grinnell, 1994).

The aim of the current study was to compare the biomechanical and biochemical properties of CDMs, collagen gels and fibrin gels to gain insight into the synthesis and remodeling of ECM by fibroblasts. Additionally, to facilitate more rapid studies, we sought to develop a chemically-defined medium permissive to quick self-production of strong and thick ECM *in vitro* that may also be of value for developing functional soft connective tissue substitutes.

Materials and Methods

All components from Sigma-Aldrich (St. Louis, MO) unless otherwise indicated.

<u>Cells</u>

Human neonatal foreskin fibroblasts (HFFs) were obtained from the American Type Culture Collection (ATCC, Manassas, VA). HFF cultures were maintained in T-300 tissue culture flasks (BD Biosciences, Bedford, MA) with high glucose Dubelco's modified Eagle' medium (DMEM, Mediatech, Herndon, VA) supplemented with 10% bovine calf serum (BCS, Hyclone, Logan, UT), and 1% penicillin/streptomycin/ ampothericin B (Invitrogen, Carlsbad, CA). HFFs were incubated at 37°C in humidified, 10% CO₂ conditions. Cells were harvested at 90% confluency with a 10min application of 0.25% trypsin/0.05% EDTA solution (Mediatech). Two million, passage 5 cells were used for each sample in all experiments.

Standard Serum-Supplemented Medium

The collagen gels, fibrin gels and cell-derived matrices (CDMs) were fed with a serum-supplemented medium consisting of DMEM with 10% fetal bovine serum (FBS, ATCC), 150μ g/ml (519μ M) L-ascorbic acid phosphate magnesium salt *n*-hydrate (Wako Pure Chemicals, Japan), and 1% penicillin/streptomycin/ampothericin B (Invitrogen). Long-lasting L-ascorbic acid phosphate magnesium salt *n*-hydrate (Ishikawa *et al.*, 1997) was added to stimulate collagen synthesis (Grinnell *et al.*, 1989; Hata and Senoo, 1989; Huang *et al.*, 1993; Kurata *et al.*, 1993; Ishikawa *et al.*, 1997; Girton *et al.*, 2000; Hoerstrup *et al.*, 2000; Laplante *et al.*, 2001; Pouliot *et al.*, 2002). The L-ascorbic acid concentration was 80% higher than the 50μ g/ml (289 μ M) of L-ascorbate used by Grinnell *et al.* (1989).

Collagen Gel, Fibrin Gel and Cell-Derived Matrix Preparation

Fibroblast-populated collagen gels (CGs) were prepared according to the methods of Elsdale and Bard (1972) by mixing 0.2ml of collagen stock solution (5mg/ml of 5mM HCl-extracted rat tail tendon collagen in 5mM acetic acid), 0.05ml 5X DMEM, 0.65ml DMEM (Mediatech) with cells, 0.1ml fetal bovine serum (FBS, ATCC), 150µg L-ascorbic acid phosphate magnesium salt *n*-hydrate (Wako Pure Chemicals) and 1% penicillin/streptomycin/ampothericin B (Invitrogen) at room temperature. One milliliter of the resulting solution was added into each 24mm diameter well. The initial collagen concentration was 1.0mg/ml, and the initial cell concentration was 2,000,000 cells/ml in 10% FBS.

Fibroblast-populated fibrin gels (FGs) were prepared based on the methods of Tuan *et al.* (1996) and Neidert *et al.* (2002). Briefly, HFFs in DMEM with 10% fetal bovine serum, 150µg/ml L-ascorbic acid phosphate magnesium salt *n*-hydrate, and 1% penicillin/streptomycin/ampothericin B were added to a fibrinogen (Sigma F4753 type IV) solution. One ml samples were mixed with 4 units of bovine thrombin (Sigma T7513) at room temperature. One ml of the resulting solution was added into each 24mm diameter well. The initial fibrinogen concentration was 1.0mg/ml, and the initial cell concentration was 2,000,000 cells/ml in 10% FBS.

Standard cell-derived matrices (CDMs) were prepared by mixing the 2 million, passage 5 HFFs with DMEM, 10% FBS, 150µg/ml L-ascorbic acid phosphate magnesium salt *n*-hydrate, and 1% penicillin/streptomycin/ampothericin B (serumsupplemented stock medium) at room temperature into a final volume of 1ml per sample. The initial cell concentration was 2,000,000 cells/ml in 10% FBS.

The 1ml samples of collagen gels, fibrin gels, and CDMs were pipetted onto 24mm diameter, porous inserts (0.4µm TransWells[™], Corning Life Sciences, Acton, MA) suspended above standard 6-well plates, and allowed to sit undisturbed at room temperature. The semi-permeable culture surfaces allowed a greater volume of nutrient media to be used at each feeding without compromising the oxygen diffusion so that the media could be changed less frequently than once per day required for these high density cultures when cultured on standard plastic plates. Furthermore, the membranes provided a shorter diffusion distance for gases and nutrients for cells on the basal side of the matrices allowing cell-derived matrices to grow more than 50% thicker than in regular 6well plates (data not shown). After a 1 hour period, 3 ml of standard serum-supplemented

medium was carefully added below and 1 ml above each sample and the samples were incubated at 37°C in humidified, 10% CO₂ conditions. Samples were fed every other day (3 ml below and 2ml above) with the standard serum-supplemented medium for 3 weeks. To reduce experimental variability, all groups were grown in parallel with the same number and type of cells, fed with the same standard serum-supplemented media at the same time, started and grown for the same period of time, grown next to each other on the same 6-well plates, and maintained in the same environment.

Chemically-Defined Media

To efficiently study cell-derived models of wound healing and tissue development *in vitro*, a method of growing CDMs quickly and economically with sufficient thickness and strength was needed. To study the effects of growth factors and media components on CDM growth without the confounding effects of serum (undefined and complex composition), a chemically-defined media was developed to maximize CDM growth. Since CDMs might be one day implanted into humans, it was also desirable to eliminate any non-human components. Chemically-defined media have been formulated for fibroblasts (Bettger *et al.*, 1981; Shipley and Ham, 1983), epidermal cells (Parenteau, 1994; Vaccariello *et al.*, 1999) and dermal equivalents (Bettger *et al.*, 1981; Shipley and Ham, 1983; Parenteau, 1994; Vaccariello *et al.*, 1999), but none of these were designed to promote a high synthetic rate in fibroblasts.

*CDM: Cell-derived matrix fed with the chemically-defined medium developed to induce fibroblasts to synthesize extensive ECM (see Appendix 4). Cells were plated at high density on porous inserts and fed with a chemically-defined medium consisting of a

base of 3:1 ratio of DMEM (high glucose (4.5g/L); with L-glutamine and sodium puryvate, Mediatech) and Ham's F12 (Invitrogen) with the addition of 5µg/ml insulin, 5ng/ml selenious acid, 10⁻⁴M ethanolamine, 150µg/ml L-ascorbic acid phosphate magnesium salt *n*-hydrate (Wako Pure Chemical), 2.5ng/ml epidermal growth factor (EGF, BD Biosciences, in 5µg/ml human serum albumin, EMD Biosciences, San Diego, CA), 5ng/ml basic fibroblast growth factor (bFGF, BD Biosciences), 1.0 x 10⁻⁷M dexamethasone, 2 x 10⁻¹⁰M L-3,3',5-Triiodothyronine, 4 x 10⁻³M of GlutamaxTM (Invitrogen), 1µg/ml Glutathione (reduced), and 1% Penicillin/Streptomycin/ Amphotericin B (Invitrogen). (See Appendix 1 for protocol on how to make cell-derived matrix.)

**CDM: Cell-derived matrix fed with the chemically-defined medium with growth factors added to the stock medium at the start of the 3-week experiment (not fresh at every feeding). A slight modification to the chemically-defined medium, entailing the addition of the growth factors (2.5ng/ml EGF and 5.0ng/ml bFGF) fresh into the entire stock medium only at the start of the experiment rather than mixing fresh growth factors separately with the stock media every time the samples are fed, was used to study the effects of decreasing growth factor concentration over time on the growth and development of cell-derived matrix. Growth factors are known to decrease over time in wounds (Clark, 1996; Diegelmann and Evans, 2004). An attempt at roughly simulating this involved adding growth factor activity in media over time (personal communication with BD Biosciences). Alternatively, adding one-tenth the amount of fresh growth factors

at each feeding was also attempted; however, the CDM did not grow sufficiently thick to perform mechanical testing (data not shown).

To minimize variability and maximize validity of comparison, the chemicallydefined medium fed CDMs (*CDMs) and the modified chemically-defined medium fed CDMs (**CDMs) were grown in an identical fashion alongside the standard serumsupplemented medium fed CDMs (CDMs), collagen gels (CGs), and fibrin gels (FGs). Collagen gels fed with the developed chemically-defined medium (*CGs) and modified chemically-defined medium (**CGs) could not be studied because the samples contracted into balls within 24 hours after being fed with the chemically-defined medium (data not shown).

Mechanical Testing

After 3 weeks in culture, the samples were exposed to ddH₂O for 1h to lyse the cells and thus eliminate the contractile forces produced by the fibroblasts, and then equilibrated in phosphate buffered saline (PBS, Mediatech) for biomechanical testing. The thickness, failure tension, failure strain, and ultimate tensile strength (UTS) of the samples were determined by a novel tissue inflation device (Billiar, 2000). Briefly, this device measures the displacement and pressure at which a sample bursts when inflated with PBS at a constant rate of 1 ml/min. The sample is circularly clamped at and inflated through a 1cm diameter opening, thus causing the sample to form a spherical cap before failing. The increasing pressure applied to the sample is measured by an on-board pressure transducer (model PX102-025GV, Omega Engineering, Stamford, CT). The displacement of the center of the cap is measured with a laser displacement system (LDS-

080, Keyence, Woodcliff Lake, NJ). The LSD-080 also measures the thickness of each sample after being slightly compressed by a small reflective disk (1.3g, 1.3cm diameter) for 1 minute. The maximum membrane tension, T, is calculated using the Law of Laplace for a spherical membrane:

$$T = \frac{1}{2} PR, \tag{eq. 1}$$

where P is the pressure when the tissue bursts and R is the corresponding radius at the point of rupture, calculated assuming a spherical cap geometry by:

$$R = (w^2 + a^2) / 2w,$$
 (eq. 2)

where a is the radius of the clamp (5mm) and w is the displacement at the center of the sample at failure measured by the laser.

The ultimate tensile strength (UTS) is calculated by:

$$UTS = T / t, \tag{eq. 3}$$

where t is the initial thickness of the specimen before inflation. The actual thickness at the time of bursting is less than this value. Thus the calculated UTS (engineering stress) is less than the true stress at failure, since the thickness of the specimen decreases as it is being inflated.

The ultimate tensile strength per collagen density (UTS / Collagen Density) is calculated by:

$$UTS / Collagen Density = UTS / (Total Collagen / \pi t(D/2)^{2})$$
$$= T / (Total Collagen / \pi (D/2)^{2}), \qquad (eq. 4)$$

where D is the diameter of the constructs (2.4cm). This calculated index represents the strength of the constructs normalized per unit of collagen and is independent of the thickness of the samples.

The failure strain is determined from the equibiaxial strain at the pole estimated from the displacement data using the approximate relationship from (Winston *et al.*, 1989):

Failure Strain =
$$2/3 (w/a)^2 - 2/15 (w/a)^4 + 2/35 (w/a)^6$$
. (eq. 5)

Biochemical Analysis

Following biomechanical testing, the samples were weighed (wet weight), lyophilized overnight, and then weighed again (dry weight). Each lyophilized sample was solubilized in 1ml pepsin (1 mg/ml in 0.5M acetic acid) and incubated overnight at 20°C with rotation. This extraction step was repeated to achieve complete extraction of the pepsin and acid soluble fraction of collagen. The samples were then centrifuged at 14000 rpm for 1 hour at 15°C, and the supernatant was combined with samples from the first extraction and used for determining non-cross-linked collagen content using the Sircol™ Assay (Biocolor, Belfast, N. Ireland). The SircolTM Assay quantified the content of intact collagen monomers in the solution, and does not detect degraded collagen (these amounts were 5-10% of the actual collagen content (data not shown) determined by a hydroxyproline assay (see methods below)). Total non-collagenous protein content of each extract was determined with the Tp-BlueTM Total Protein Assay (Biocolor) using Coomassie brilliant blue G (Bradford, 1976). Total protein content was obtained by adding this value to the total amount of collagen obtained for each sample. The remaining pellets were digested with Proteinase K (Invitrogen), 50µg in 500µl solution of 10mM EDTA and 0.1 M sodium phosphate (pH 6.5)(Fisher) overnight at 60°C. A 100µl aliquot of the digest was used for determining sulfated glycosaminoglycan and proteoglycan content (which does not include hyaluronic acid) with the Blycan[™] Assay (Biocolor). A

10ul aliquot of the digest was then used to determine DNA content, and thus cell number (assuming 8pg of DNA per cell), with Hoechst 33258 dye (Amersham Biosciences, Piscataway, NJ) on a DyNA Quant 200 fluorometer (Amersham Biosciences). 100-200 ul aliquots of the Proteinase K digests were used to determine the non-acid and pepsin extractable collagen content (insoluble collagen fraction) with a hydroxyproline assay. The hydroxyproline assay was based on the methods of Edwards and O'Brien (1980) and consists of hydrolyzing each sample in 6.0 M HCl for 16 hours at 110°C, followed by drying of the samples under vacuum, reconstituting to 2.0ml with assay buffer (consisting of 5g/l citric acid, 1.2ml/l glacial acetic acid (EMD Chemicals, Gibbstown, NJ), 12g/l sodium acetate (VWR, Bridgeport, NJ), and 3.4g/l sodium hydroxide (VWR)), mixing with 1.0ml of Chloramine-T reagent (made from 62mM chloramine-T solution (VWR) in 20.7% ddH₂O, 26% n-propanol (VWR) and 53.3% of assay buffer) for 20 minutes at room temperature, adding 1.0ml of freshly prepared dimethylaminobenzaldehyde reagent (made from 15g p-dimethylaminobenzaldehyde in 60ml of n-propanol (VWR) and 26ml of 60% perchloric acid (VWR)) and incubating each sample at 60°C for 15 minutes, cooling each sample in tap water for 5 minutes, and measuring the absorbance of each sample at 550 nm within 45 minutes. Absorbance readings were correlated with collagen amount using a standard curve and a conversion factor of 10µg collagen to 1µg 4hydroxyproline. The standard curve was created and the conversion factor determined with known amounts of Trans-4-hydroxy-L-proline and rat tail type I collagen.

(See Appendix 3 for complete protocol.)

Histology and Transmission Electron Microscopy

One sample from each group was prepared for histological evaluation by fixing in 10% zinc formalin (VWR) for 1 hour, followed by washing and storing in 4°C ethanol. The samples were embedded onto paraffin blocks, sectioned into 10µm thick sections, and stained with hematoxylin and eosin (H&E). The stained sections were imaged and photographed at 200x with a Nikon Eclipse E600 microscope and Spot digital camera (Diagnostic Instruments, Sterling Heights, MI).

One sample from each group (except **CDM) was fixed for transmission electron microscopy (tEM) according to the methods of Gibson and Lang (1979). Briefly, the samples were fixed in 2% glutaraldehyde for 1 hour, rinsed 3 times in sodium cacodylate buffer, fixed in osmium tetroxide for 10 minutes, and dehydrated in 10 minute ethanol (VWR) steps followed by two washes in propylene oxide (all from Electron Microscopy Sciences, Hatfield, PA). The samples were then embedded in epon-araldite resin (Electron Microscopy Sciences) according to the methods of Karnovsky (1965). Briefly, the samples were embedded in a 1:1 ratio of propylene oxide to Epon Araldite for 2 hours, followed by embedding in 100% Epon Araldite for 3 hours, and then transferring each sample to embedding molds with fresh 100% Epon Araldite and cured in a 60°C oven overnight. 60-90nm gold- and silver-colored sections were stained for 5 minutes with urinyl acetate saturated in 50% ethanol, followed by staining for 20 minutes in lead citrate according to the methods of Venable and Coggesmall (1965). The stained sections from each of the samples were then imaged with a ZEISS electron microscope for observation of cell, collagen, and ECM morphology. The average collagen fibril diameter and density were calculated from the average measured diameters and number of

collagen fibrils per square micrometer from 5 randomly chosen fields taken at high magnification (57,000X or 88,000X). The collagen diameters were measured at the thinnest point of cross-sectioned collagen fibrils with a 5x magnified ruler. If a randomly chosen field fell on a grid, then another field continued to be randomly chosen until it fell solely on the sample.

<u>Statistics</u>

Error bars indicate one standard deviation in all figures. Statistical differences between groups were determined using ANOVA with Tukey HSD post hoc analysis (SPSS, Inc., Chicago, IL). Differences were considered significant with p<0.05 (see Appendix 5 for complete analysis). Linear regression including all the samples was performed with Tension and Failure Strain as the dependent variables and Total Protein, Total Collagen, Non-Acid and Pepsin Extractable Collagen Fraction, Total Proteoglycans and Glycosaminoglycans, and Cell Number as the independent variables, and the adjusted R²-values were obtained for determining the degree of association between the independent and dependent variables (SPSS, Inc.).

Results

All samples were sufficiently thick and strong at the end of the 3-week culture period to be handleable and clamped in the mechanical testing device. All samples burst in the center. The collagen and fibrin gels started out at a thickness of 2.2 mm (1ml on a 24mm diameter well) and contracted to a thickness $83 \pm 5 \mu m$ and $218 \pm 5 \mu m$, respectively, as the cells reorganized the initially sparse protein gels, whereas the CDMs started out as slightly more than a single cell layer thick and grew to $125 \pm 6 \mu m$ during the 3-week period. The CDMs were substantially stronger (UTS = 223 ± 9 kPa) than the collagen gels (169 ± 43 kPa) and significantly stronger than the fibrin gels (133 ± 11 kPa, p<0.01). The collagen gels were significantly less extensible than the fibrin gels.

The results from the mechanical and biochemical analyses of CDMs, collagen gels and fibrin gels are summarized in Table 1. The net total protein synthesized by the CDMs was significantly more $(1.25 \pm 0.06 \text{ mg})$ than the net increase in total protein in the collagen gels $(0.08 \pm 0.03 \text{ mg}, \text{p} < 0.02)$ and fibrin gels $(0.58 \pm 0.04 \text{ mg}, \text{p} < 0.05)$. Collagen was a major constituent of the total amount of protein. Observation by transmission electron microscopy (tEM) revealed that the diameter of the collagen fibrils in the CDMs, collagen gels and fibrin gels were $46 \pm 5 \text{ nm}$, $52 \pm 10 \text{ nm}$ and $47 \pm 5 \text{ nm}$, respectively, while the collagen density within 3µm around the cell surface was significantly greater for the CDMs ($79 \pm 2 \text{ fibrils/µm}^2$) and collagen gels ($81 \pm 4 \text{ fibrils/µm}^2$) than for the fibrin gels ($28 \pm 4 \text{ fibrils/µm}^2$, p<0.01). Although most of the collagen in the collagen gel consisted of large, approximately 56 nm diameter fibrils, there was a small presence of approximately 46 nm diameter fibrils; presumably newly

synthesized collagen (Fig. 4), indicating that some of the original collagen in the gel had been degraded since the total amount of collagen in the collagen gels remained unchanged over the 3-week period. The CDMs had a significantly (p<0.01) greater fraction of non-acid and pepsin extractable collagen (insoluble collagen fraction) than the collagen and fibrin gels. The UTS / Collagen Density was significantly greater (14.5 \pm 1.1 kPa/mg/cm³) for the CDMs than the collagen gels (6.4 \pm 1.9 kPa/mg/cm³, p<0.01). The high value of UTS / Collagen Density for the fibrin gels (25.9 \pm 2.4 kPa/mg/cm³) appears to be due to ECM proteins other than collagen, such as fibrin, in the gel.

Table 1. Results from mechanical and biochemical analysis of cell-derived matrices (CDMs), collagen gels and fibrin gels containing human foreskin fibroblasts. Numbers indicate mean +/- SD. Numbers in parentheses indicate approximate initial amount. Collagen fibril diameters and densities were measured in proximity to cell surfaces.

	Collagen gel	Fibrin gel	CDM
Ultimate Tensile Strength	$168.5 \pm 43.1 \text{ kPa}$	133.2 ± 10.6 kPa	223.2 ± 9 kPa
Thickness	$83 \pm 5 \ \mu m$	$218 \pm 5 \ \mu m$	$125 \pm 6 \ \mu m$
	(2,220 µm)	(2,220 µm)	(~30 µm)
Failure Strain	0.13 ± 0.02	0.21 ± 0.03	0.18 ± 0.03
Total Protein	$1.08 \pm 0.03 \text{ mg}$	1.58 ± 0.04 mg	1.25 ± 0.06 mg
	(1.0 mg)	(1.0 mg)	
Total Collagen	$0.99 \pm 0.02 \text{ mg}$	$0.51 \pm 0.03 \text{ mg}$	$0.85 \pm 0.03 \text{ mg}$
	(1.0 mg)		
Insoluble Collagen Fraction	1.5 ± 0.1 %	$1.3 \pm 0.1 \%$	$2.3 \pm 0.2 \%$
Collagen Density	$26.5 \pm 1.5 \text{ mg/cm}^3$	$5.2 \pm 0.2 \text{ mg/cm}^3$	$15.1 \pm 0.9 \text{ mg/cm}^3$
UTS / Collagen Density	6.4 ± 1.9	25.9 ± 2.4	14.5 ± 1.1
	kPa/mg/cm ³	kPa/mg/cm ³	kPa/mg/cm ³
Collagen Fibril Diameter	$52 \pm 10 \text{ nm}$	$47 \pm 5 \text{ nm}$	$46 \pm 5 \text{ nm}$
Collagen Fibril Density	81 ± 4 fibrils/ μ m ²	28 ± 4	79 ± 2 fibrils/ μ m ²
		fibrils/µm ²	
Proteoglycans &			
Glycosaminoglycans	$38.4 \pm 0.7 \ \mu g$	$45.4 \pm 0.9 \ \mu g$	$31.3 \pm 0.5 \ \mu g$
Wet Weight / Dry Weight	16.4 ± 0.6	20.1 ± 0.4	13.0 ± 0.5
Cell Number	2.8 ± 0.1 million	4.0 ± 0.1 million	2.8 ± 0.1 million
	(2.0 million)	(2.0 million)	(2.0 million)

The *CDMs and **CDMs were also grown in parallel next to the CDMs, collagen gels and fibrin gels in the same 6-well plates, but they were fed with a chemically-defined medium instead of a serum-supplemented medium. To compare the effects of the chemically-defined medium on matrix growth, the *CDMs and **CDMs were compared to CDMs (that were fed with the standard serum-supplemented medium). The chemically-defined medium, on the other hand, caused the contractile forces within the collagen gels to become so great that they detached from the wells and contracted into themselves, preventing a comparison of the effects of the chemically-defined medium and the serum-supplemented medium on the development of gels.

The collagen in the cell-derived matrices organized into several alternating layers that were at right-angles to each other, resembling native soft connective tissue (see Appendix 6). Cells produced a more than 3 times thicker matrix in the chemically-defined medium (*CDMs at $395 \pm 6 \mu$ m) than in the standard serum-supplemented medium (CDMs at $125 \pm 6 \mu$ m). One-time addition of growth factors at the start of the 3-week period resulted in a significantly thinner matrix (**CDMs at $225 \pm 7 \mu$ m) than when the growth factors were added fresh at every feeding. The thicknesses correlated with total protein content (adjusted R²=0.900), which in turn correlated with total cell number (adjusted R²=0.874). However, the **CDMs had significantly more total collagen than *CDMs, although the *CDMs had almost twice as much total protein as the **CDMs. The **CDMs were almost twice as strong as the *CDMs (**CDMs at 697 ± 36 kPa significantly stronger (p<0.01) than *CDMs at 315 ± 7 kPa), which in turn were significantly stronger than the CDMs (UTS = 223 ± 9 kPa, p<0.01) (see Table 3). Cell-derived matrices grown for longer periods of time further increased in thickness and

strength (data not shown). For comparison, the thickness of the samples obtained from histological sections were 110µm, 465µm, and 240µm, for CDM, *CDM, and **CDM, respectively (see figure 1). The failure strains for the *CDMs and **CDMs were almost twice as great as for the CDMs.

The results from the mechanical and biochemical analysis of CDMs, *CDMs and **CDMs are summarized in Table 2. The CDMs and **CDMs had about a 2x greater fraction of their total protein as collagen than *CDMs. Observation by transmission electron microscopy (tEM) revealed that CDMs and *CDMs had approximately the same diameter collagen fibrils at 46 ± 5 nm and 48 ± 5 nm, and the same collagen density at 79 ± 2 fibrils/µm² and 80 ± 2 fibrils/µm², respectively, measured within 3µm around the cell surface. The *CDMs and **CDMs had more than a five times greater fraction of non-acid and pepsin extractable collagen (insoluble collagen fraction) than the CDMs. The UTS / Collagen Density reflected the high insoluble collagen fraction values and was significantly greater for the *CDMs (40.3 ± 0.4 kPa/mg/cm³) and **CDMs (40.0 ± 1.9 kPa/mg/cm³) than for the CDMs (14.5 ± 1.1 kPa/mg/cm³, p<0.01).

Table 2. Results from mechanical and biochemical analysis of CDMs, *CDMs and **CDMs. Numbers indicate mean +/- SD. Numbers in parentheses indicate approximate initial amount. Collagen fibril diameters and densities were measured in proximity to cell surfaces. Standard serum-supplemented medium fed CDM data from Table 1 reported for comparison.

	CDM	*CDM	**CDM
Ultimate Tensile Strength	$223.2 \pm 9 \text{ kPa}$	314.5 ± 7.2 kPa	697.1 ± 36.1 kPa
Thickness	$125 \pm 6 \ \mu m$	$395 \pm 6 \ \mu m$	225 ± 7 μm
	(~30 µm)	(~30 µm)	(~30 µm)
Failure Strain	0.18 ± 0.03	0.33 ± 0.03	0.31 ± 0.06
Total Protein	$1.25 \pm 0.06 \text{ mg}$	$4.40 \pm 0.08 \text{ mg}$	$2.65 \pm 0.07 \text{ mg}$
Total Collagen	$0.85 \pm 0.03 \text{ mg}$	$1.40 \pm 0.04 \text{ mg}$	$1.78 \pm 0.06 \text{ mg}$
Insoluble Collagen Fraction	2.3 ± 0.2 %	12.8 ± 0.5 %	13.1 ± 0.3 %
Collagen Density	$15.1 \pm 0.9 \text{ mg/cm}^3$	$7.8 \pm 0.2 \text{ mg/cm}^3$	$17.4 \pm 0.1 \text{ mg/cm}^3$
UTS / Collagen Density	14.5 ± 1.1	40.3 ± 0.4	40.0 ± 1.9
	kPa/mg/cm ³	kPa/mg/cm ³	kPa/mg/cm ³
Collagen Fibril Diameter	$46 \pm 5 \text{ nm}$	$48 \pm 5 \text{ nm}$	-
Collagen Fibril Density	79 ± 2 fibrils/ μ m ²	80 ± 2 fibrils/ μ m ²	-
Proteoglycans &			
Glycosaminoglycans	$31.3 \pm 0.5 \ \mu g$	$64.3 \pm 0.6 \ \mu g$	$38.4 \pm 0.4 \ \mu g$
Wet Weight / Dry Weight	13.0 ± 0.5	19.5 ± 0.2	20.3 ± 0.6
Cell Number	2.8 ± 0.1 million	6.1 ± 0.1 million	3.6 ± 0.1 million
	(2.0 million)	(2.0 million)	(2.0 million)

Figure 1. Hematoxylin and Eosin (H&E) stained sections. Thickness measured by digital image analysis: Cell-derived matrices (CDMs) were 110 μ m thick, collagen gels (CGs) were 84 μ m thick, fibrin gels (FGs) were 230 μ m thick, *CDMs were 465 μ m thick, and **CDMs were 240 μ m thick. All micrographs taken at 200x. Scale bars = 100 μ m.

percentage of proteoglycans and glycosaminoglycans. *CDMs and **CDMs also contained a significantly higher fraction of non-acid and pepsin extractable collagen (insoluble collagen fraction), and were stronger per microgram of collagen (UTS/Collagen Density) than collagen gels or fibrin gels. CDMs were more than twice as strong as collagen gels per microgram of collagen, indicating the possibility that the collagen in the CDMs was more organized for strength than in collagen gels. In addition to collagen, a substantial proportion of the strength of *CDMs and fibrin gels was also due to other ECM proteins. *CDMs and **CDMs were significantly more extensible than CDMs, collagen gels and fibrin gels.

Table 3. Statistical comparison between each group of specimens. *CDMs were significantly different than CDMs and collagen gels in all parameters tested. *CDMs and **CDMs had the least number of significantly different parameters than any other pair of groups. Statistical differences between groups were determined using ANOVA with Tukey HSD post hoc analysis, with differences with p<0.05 being considered significant. The same 12 parameter shown in Figure 2 were used. The parameters between groups that were NOT significantly different from each other are indicated with a letter. Key: a = thickness, b = total protein, c = cell number, d = tension, e = ultimate tensile strength (UTS), f = failure strain, g = total collagen, h = % collagen, i = fraction of non-acid and pepsin extractable collagen, j = total proteoglycans and glycosaminoglycans, k = % proteoglycans and glycosaminoglycans, l = UTS / Collagen Density.

	Collagen Gel	Fibrin Gel	CDM	*CDM	**CDM
Collagen Gel	-	e,i	c,e,f		j
Fibrin Gel	e,i	-	d,f	h	а
CDM	c,e,f	d,f	-		h
*CDM		h		-	f,i,k,l
**CDM	j	а	h	f,i,k.l	-

The results from linear regressions of all the samples with Tension as the dependent variable and Total Protein Amount, Total Collagen Amount, Non-Acid and Pepsin Extractable Collagen Fraction, Total Proteoglycan and Glycosaminoglycan Amount, and Cell Number as the independent variables are shown in Table 4, along with the adjusted R²-values. The adjusted R²-value indicates the fraction of the total variance in "Tension" explained by the regression equation. The adjusted R²-values are always less than the coefficient of determination R². These results indicate that there is a high

degree of association between the "Non-Acid and Pepsin Extractable Collagen Fraction" and "Tension" for collagen gels, fibrin gels, and cell-derived matrices (adjusted $R^2 =$ 0.977). With the addition of the "Total Collagen Amount" independent variable, the adjusted R^2 value increases to 0.992. Further addition of the "Total Protein Amount" independent variable increases the adjusted R^2 -value by an insignificant amount to 0.993. A scatterplot of Tension vs. Total Collagen Amount and Non-Acid and Pepsin Extractable Collagen Fraction is shown in Figure 3. Since the area of all the samples were essentially identical, and if each variable was divided by the thickness of the samples, the adjusted R^2 -values in Table 4 would be the same for UTS (UTS = Tension / thickness of sample) as the dependent variable and Protein Density, Collagen Density, Non-Acid and Pepsin Extractable Collagen Density, Proteoglycan and Glycosaminoglycan Density, and Cell Density as the independent variables (see table 5).

Table 4. Adjusted R²-values indicating the fraction of the total variance in Tension of the collagen gel, fibrin gel, and cell-derived matrix samples explained by the Total Protein Amount, Total Collagen Amount, Non-Acid and Pepsin Extractable Collagen Fraction, Total Proteoglycan and Glycosaminoglycan Amount, and Cell Number of the samples. Columns with an asterix (*) indicate that the adjusted R²-value given in that column have those independent variables added to them.

Independent Variables:	Tension (dependent variable)			ble <u>)</u>	
Total Protein Amount (mg)	0.681	0.857		0.977	0.993
Total Collagen Amount (mg)	0.713	*	0.992		*
Non-Acid and Pepsin Extractable Collagen Fraction (mg)	0.977		*	*	*
Total Proteoglycan and Glycosaminoglycan Amount (µg)	0.214				
Cell Number (Million)	0.355				

Scatterplot

Dependent Variable: Tension

Figure 3. Scatter Plot of Tension vs. Total Collagen Amount and Non-Acid and Pepsin Extractable Collagen Fraction. Adjusted R^2 -value = 0.992. Output from SPSS 12.0 for Windows (SPSS, Inc., Chicago, IL).

Table 5. Adjusted R²-values indicating the fraction of the total variance in Tension of the collagen gel, fibrin gel, and cell-derived matrix samples explained by the Protein Density, Collagen Density, Non-Acid and Pepsin Extractable Collagen Density, Proteoglycan and Glycosaminoglycan Density, and Cell Density of the samples. Columns with an asterix (*) indicate that the adjusted R²-value given in that column have those independent variables added to them.

Independent Variables:	<u>UTS (dependent variable)</u>			<u>e)</u>	
Protein Density (mg)	0.681	0.857		0.977	0.993
Collagen Density (mg)	0.713	*	0.992		*
Non-Acid and Pepsin Extractable Collagen Density (mg)	0.977		*	*	*
Proteoglycan and Glycosaminoglycan Density (µg)	0.214				
Cell Density (Million)	0.355				

The results from linear regressions of all the samples with Failure Strain as the dependent variable and Total Protein Amount, Total Collagen Amount, Non-Acid and Pepsin Extractable Collagen Fraction, Total Proteoglycan and Glycosaminoglycan Amount, and Cell Number as the independent variables are shown in Table 6, along with the adjusted R^2 -values. The adjusted R^2 -value indicates the fraction of the total variance in the "Failure Strain" explained by the regression equation. These results indicate that there is some degree of association between the "Failure Strain" and "Total Protein" (adjusted $R^2 = 0.742$) or "Non-Acid and Pepsin Extractable Collagen Fraction" (adjusted $R^2 = 0.709$) for collagen gels, fibrin gels, and cell-derived matrices. Together, these two independent variables results in an adjusted $R^2 = 0.787$. With the addition of the "Total Collagen Amount" independent variable to the "Non-Acid and Pepsin Extractable Collagen Fraction", an adjusted $R^2 = 0.884$ is obtained. Conversely, the independent variables "Non-Acid and Pepsin Extractable Collagen Fraction", "Total Proteogycan and Glycosaminoglycan Amount" and "Cell Number" together results in an adjusted R²-value of 0.864. A scatterplot of Failure Strain vs. Total Collagen Amount and Non-Acid and Pepsin Extractable Collagen Fraction is shown in Figure 4.

Table 6. Adjusted R²-values indicating the fraction of the total variance in Failure Strain of the collagen gel, fibrin gel, and cell-derived matrix samples explained by the Total Protein Amount, Total Collagen Amount, Non-Acid and Pepsin Extractable Collagen Fraction, Total Proteoglycan and Glycosaminoglycan Amount, and Cell Number of the samples. Columns with an asterix (*) indicate that the adjusted R²-value given in that column have those independent variables added to them.

Independent Variables:	<u>Failure Strain (dependent variable)</u>							
Total Protein Amount (mg)	0.742	0.787	0.761					0.797
Total Collagen Amount (mg)	0.332				0.884			
Non-Acid and Pepsin Extractable Collagen Fraction (mg)	0.709	*		0.823	*	0.775	0.864	
Total Proteoglycan and Glycosaminoglycan Amount (µg)	0.396		*			*	*	*
Cell Number (Million)	0.583			*			*	*

Scatterplot

Dependent Variable: FailureStrain

Figure 4. Scatter Plot of Failure Strain vs. Total Collagen Amount and Non-Acid and Pepsin Extractable Collagen Fraction. Adjusted R^2 -value = 0.884. Output from SPSS 12.0 for Windows (SPSS, Inc., Chicago, IL).

Figure 5. Sample morphology observed with tEM. The fibroblasts within the *CDM appeared to be slightly larger than in the other samples. Fibrin gels had a cell density that was significantly higher than in the other samples. All micrographs taken at 3,000x. Scale bar = $10\mu m$.

Figure 6. Distribution of collagen fibrils. CDMs, collagen gels, and *CDMs had a more than 2.5 times greater density of collagen fibrils around the cell surface at around 80 fibrils/ μ m² than fibrin gels at 28 fibrils/ μ m². The collagen fibrils of the cell-derived matrices appeared more parallel and to consist of more parallel alternating layers than any of the other groups. The collagen fibrils of the collagen gels appeared somewhat parallel but consisted of only a few alternating layers, while the collagen fibrils of the fibrin gels appeared only parallel in small regions of the ECM. The collagen gels had a large majority of collagen fibrils about 56 nm in diameter due to the collagen gel, and a small number of collagen fibrils about 46 nm in diameter that had presumably been secreted by the fibroblasts. All micrographs taken at 12,000x. Scale bar = 1 μ m.

Discussion

The data from the present study suggest that tissue-equivalents could be grown stronger and thicker when they are self-produced – in other words, when the cells are allowed to grow and develop their own mechanical environment rather than being supplied with a mechanical environment as in gels. To gather more insight into the differences between fibroblast-populated collagen gels, fibrin gels, and cell-derived matrices, it was desirable to reduce experimental variability by growing all groups next to each other on the same 6-well plates for 3-weeks, seeded with the same number of cells from the same batch, and fed with the same standard serum-supplemented medium at the same frequency. While the collagen and fibrin gels contracted more than an order of magnitude (2.2 mm to a thickness $83 \pm 5 \,\mu$ m and $218 \pm 5 \,\mu$ m, respectively) over the 3week culture period as the cells reorganized the initially sparse protein gels, the CDMs guadrupled in thickness (~30 μ m to a thickness of 125 ± 6 μ m) and were significantly stronger (UTS = 223 ± 9 kPa) than the collagen gels (169 ± 43 kPa, p<0.05 LSD) and the fibrin gels (133 ± 11 kPa, p<0.01). The net increase in protein accumulated by the CDMs was significantly more $(1.25 \pm 0.06 \text{ mg})$ than the net increase in protein accumulated by the collagen gels $(0.08 \pm 0.03 \text{ mg}, \text{p} < 0.02)$ and fibrin gels $(0.58 \pm 0.04 \text{ mg}, \text{p} < 0.05)$.

The collagen in collagen gels is known to signal embedded fibroblasts to drastically slow down their proliferation and synthesis of ECM proteins (Clark, 1996). However, the synthesized collagen in the CDMs and fibrin gels (Neidert *et al.*, 2002) did not appear to have this effect. The amount of collagen in the CDMs (0.85 ± 0.03 mg) was essentially the same as in the collagen gels (0.99 ± 0.02 mg) at the end of the 3-week

culture period. CDMs also contained far more non-collagenous protein $(0.40 \pm 0.03 \text{ mg})$ than the collagen gels $(0.09 \pm 0.01 \text{ mg}, p<0.01)$. The lack of any collagen in the fibrin gels at the start of the culture did not present any inhibitory signal towards collagen synthesis as in the case of the collagen gels, but fibrin is known to downregulate fibroblast procollagen mRNA (Clark, 1996) which possibly explains the observation that the fibroblasts within the fibrin gel ended up synthesizing only half as much collagen $(0.51 \pm 0.03 \text{ mg})$ as the CDMs during the 3 week period. Interestingly, the net total non-collagenous protein synthesized in the fibrin gels was also very low $(0.07 \pm 0.01 \text{ mg})$.

The UTS / Collagen Density was also significantly greater (14.5 \pm 1.1 kPa/mg/cm³) for the CDMs than the collagen gels (6.4 \pm 1.9 kPa/mg/cm³, p<0.01). Each microgram of collagen in the CDMs was thus more than twice as strong as each microgram of collagen in the collagen gels, possibly due to higher collagen cross-link density and/or more organized arrangement of collagen in the CDMs. The UTS / Collagen Density values correlated with the non-acid and pepsin extractable collagen fraction for the CDMs and collagen gels (R² = 0.925), but not for the fibrin gels (R² = 0.109). The high value of UTS / Collagen Density for the fibrin gels (25.9 \pm 2.4 kPa/mg/cm³) appears to be due to ECM proteins other than collagen, such as fibrin, in the gel, that contributed substantially to the strength.

Collagen gels have been studied extensively for the last several decades as *in vitro* wound-healing models, and much effort has gone into developing stronger collagen gels for use as tissue equivalents (Grinnell, 2003). Recently, Feng *et al.* (2003) measured the UTS of collagen gels at 250kPa at 10 weeks when allowed to contract freely. Earlier development and characterization of tissue equivalents made from collagen gels

(ligament-equivalent fibroblast-populated collagen matrices) by Huang *et al.* (1993) resulted in an ultimate tensile strength (UTS) of 140 kPa in 12 weeks when mechanically stimulated uniaxially. The cell number tripled in 2 weeks from an initial cell density of 1 million cells/ml and remained at this cell number for the rest of the period, compared to an almost tripling in cell number in 3 weeks for the collagen gels in this study. The total weight of the constructs decreased from 12mg at week 1 to 10mg after week 3, while the sulfated glycosaminoglycan content increased steadily over the 12 week period. In comparison, the total weight of the collagen gels in this study remained fairly constant during the 3-week period, and the total sulfated proteoglycan and glycosaminoglycan content was 38.4 ± 0.7 µg at the end of the 3-week culture period.

Recent developments in engineering strong fibrin gels by Neidert *et al.* (2002) with an initial fibrinogen concentration of 3.3 mg/ml and the addition of factors such as TGF- β 1 and insulin in addition to 10% fetal bovine serum has produced tissue equivalents with a tensile strength (UTS) of 240 kPa over a 51 day growth period. These fibrin gels contracted 1500 ± 115µm to 200 ± 72µm within 4 days, and contained about 100µg/cm² of collagen at day 21 and about 230µg/cm² of collagen at day 51 which represented 33 ± 5.4 % of the total dry weight. The fibrin gels in this study had similar results and contained 113 ± 10 µg/cm² collagen at day 21 which represented 32.2 ± 1.2 % of the total protein in the constructs. Neidert *et al.* (2002) also found that the UTS of fibrin gels are correlated to the total collagen amount in the constructs (R² = 0.7686 at day 21), while this study found that the UTS correlated to the collagen density (R² = 0.733 at day 21) not just in fibrin gels but also in collagen gels and cell-derived matrices.
However, the UTS was found to correlate even more closely to the non-acid and pepsin extractable collagen fraction ($R^2 = 0.993$) in all of these specimens.

The cell-derived matrices cultured with the standard serum-supplemented medium had similar, but higher, values for thickness and amount of collagen ($125 \pm 6 \mu m$; $0.189 \pm 0.007 \text{ mg/cm}^2$ collagen in 3 weeks) as the self-produced matrices produced by Grinnell *et al.* (1989)) that grew multiple cell layers thick with $0.118 \pm 2 \text{ mg/cm}^2$ collagen in 5 weeks. These differences might be due to the much higher starting cell density of 4.4×10^5 cells/cm² wells (compared to $5 \times 10^4 \text{ cells/cm}^2$ wells by Grinnell *et al.* (1989), feeding of the samples every other day, the use of porous inserts, and 80% greater concentration of L-ascorbate, in the more stable form of L-ascorbate). Ishikawa *et al.* (1997) have grown cell-derived matrices that synthesized 0.327 ± 0.66 mg collagen in 4 weeks. L'Heureux *et al.* (1998) have made matrices of 120µm in thickness in 4 weeks. Clark *et al.* (1997), on the other hand, have produced matrices that were 3-5 cell layers thick in 2 weeks, but 8-16 cell layers thick in 2 weeks when TGF- β 1 was added into the serum-supplemented medium.

As with many native connective tissues, much of the strength of these cultured tissues can be attributed to the collagen density (Hukins, 1982; Roeder *et al.*, 2002). However, while the CDMs had 68.2 ± 1.1 % of their total protein as collagen, they were significantly weaker (UTS = 223.2 ± 9.0 kPa, p<0.01) than the cell-derived matrices cultured with the chemically-defined medium, or *CDMs (UTS = 314.5 ± 7.2 kPa) that had only 31.8 ± 0.5 % of their total protein as collagen and the **CDMs (UTS = 697.1 ± 36.1 kPa) that had 67.0 ± 0.6 % of their total protein as collagen. The collagen gels, in

turn, with 91.8 ± 1.0 % of their total ECM proteins as collagen were even weaker than this (UTS = 168.5 ± 43.1 , p<0.05). The UTS / Collagen Density values for the *CDMs and **CDMs (40.3 \pm 0.4 kPa/mg/cm³ and 40.0 \pm 1.9 kPa/mg/cm³, respectively) were thus significantly higher than for the CDMs $(14.5 \pm 1.1 \text{ kPa/mg/cm}^3)$. This difference could be due to the high tensile strength of collagen being largely attributable to the presence of intra-molecular covalent cross-links between the collagen fibrils (Parry, 1988). The non-acid and pepsin extractable collagen fraction was closely correlated to the UTS / Collagen Density values for all these groups (see Table 3). The non-acid and pepsin extractable collagen fraction might thus represent collagen cross-links in these samples or some other property leading to significant stability of the collagen fibrils and strengthening of the matrix. Strength also increases with increasing collagen fibril diameter and density (which typically range from 20 - 120 nm in diameter in native tissue) (Hukins, 1982; Huang et al., 1993; Christiansen et al., 2000; Roeder et al., 2002), but the collagen fibril diameters and densities for all these samples were essentially the same, so this does not appear to be a significantly contributing factor to the differences in strength.

Although the collagen gels had by far the greatest percentage of collagen, the largest collagen fibril diameters and were allowed to be contracted by the fibroblasts in order to increase their strength (Huang *et al.*, 1993; Seliktar *et al.*, 2000; Roeder *et al.*, 2002; Feng *et al.*, 2003), they were substantially weaker than the CDMs grown under identical conditions. The ratio of UTS to Collagen Density of the collagen gels was less than half the value of the CDMs. This might be due to the collagen being more organized for strength in the CDMs, 50% greater fraction of non-acid and pepsin extractable

collagen, and larger amounts of other supporting ECM proteins, including the possibility of fibronectin. (Gillery *et al.*, 1986; Klueh *et al.*, 2001; Gildner and Hocking, 2003) have shown that strength increases with the addition of fibronectin which increases actin organization and regulates the composition of the ECM. For example, Gildner and Hocking (2003) have shown that fibronectin induces a 5-fold increase in the ultimate tensile strength of collagen gels.

The present data also suggest that serum-free media can be developed that induce fibroblasts to produce a stronger and thicker ECM. When cell-derived matrices were fed with the chemically-defined medium, they grew significantly thicker and stronger than their serum-supplemented counterparts. When collagen gels were fed with the chemically-defined medium, the contractile forces within the collagen gels became so great that they detached from the wells and contracted into themselves within 24h of feeding them with the chemically-defined medium. The reason for the contraction of the collagen gels when fed with the chemically-defined medium is the subject of further studies. Apart from the necessary components of insulin, selenious acid and a lipid precursor (ethanolamine, in this case) in serum-free media (Freshney, 2000) (these components are present in serum), the chemically-defined medium was similar to the serum-supplemented medium (less the serum) except for the addition of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), dexamethasone and L-3,3',5-Triiodothyronine. The addition of these relatively few components (and the lack of the numerous other components present in serum), resulted in a doubling (**CDMs) or tripling (*CDMs) in thickness and a 40% (*CDMs) to 210% (**CDMs) increase in the

ultimate tensile strength over identical standard serum-supplemented samples. It also resulted in a doubling of the failure strain, a quadrupling of the proliferation rate, and a quintupling of the fraction of non-acid and pepsin extractable collagen. These large differences could also be as a result of certain components in fetal bovine serum (FBS) having an inhibitory role on the proliferative and synthetic rate of fibroblasts.

Epidermal growth factor (EGF) was added since it has been shown to stimulate the growth and production of non-collagenous proteins and other ECM components such as proteoglycans and glycosaminoglycans (Kurata and Hata, 1991) that contribute to the mass and thickness of cell-derived matrices. Basic fibroblast growth factor (bFGF), on the other hand, plays an important role in normal tissue repair and wound healing, and is a potent mitogenic and chemotactic factor for fibroblasts, regulating proliferation and extracellular matrix (ECM) production by these cells (Milewski et al., 1998; Aktas and Kayton, 2000), and was found to increase the strength and thickness of cell-derived matrices in pilot tests. The major reason for the addition of the growth factors into the chemically-defined medium was to stimulate the production of numerous noncollagenous ECM proteins in addition to collagen (Kurata and Hata, 1991) in order to produce tissue that might more closely resemble native soft connective tissue. Lascorbate was added since it has been found to significantly increase ECM synthesis by upregulating the expression of proalpha(1)(I) and proalpha(2)(I) collagen (Grinnell et al., 1989; Hata and Senoo, 1989; Huang et al., 1993; Kurata et al., 1993; Girton et al., 2000; Hoerstrup et al., 2000; Laplante et al., 2001; Pouliot et al., 2002). Since L-ascorbate breaks down within 24h in culture, a more stable form (L-ascorbic acid phosphate magnesium salt *n*-hydrate) with a more than one week stability in culture was used

(Ishikawa et al., 1997). Ishikawa et al. (1997) found the optimum concentration of this form of L-ascorbate to be 1mM for fibroblast cultures; however, half of this amount, 150µg/ml (519mM), was found to results in a more desirable combination of strength and thickness for the cell-derived matrices in pilot tests. Dexamethasone was added since it has been shown to significantly increase fibroblast cell proliferation in serum-free media (Bettger *et al.*, 1981; Shipley and Ham, 1983) by upregulating the PDGF-alpha receptor mRNA and protein (Warshamana et al., 1998), and to promote actin stress fiber formation and increased fibronectin matrix accumulation that aid in the more effective organization of the ECM (Zoppi et al., 1998; Brenner et al., 2000). Also, the increase in collagenase and stromelysin mRNA by EGF that degrade collagen has been shown to be inhibited with the addition of dexamethasone (Delany and Brinckerhoff, 1992). Insulin, selenious acid, and a lipid precursor (ethanolamine, in this case) were added since they are essential standard components of any serum-free media (Freshney, 2000). Insulin also increases the residence time of procollagen mRNA and upregulates latent TGF- β 1 synthesis (Ghahary et al., 1999). Interestingly, transferrin, another essential standard component of many serum-free media (Freshney, 2000), was not needed and had no effect on the growth or strengthening of cell-derived matrices in pilot studies. Further studies would be needed to determine the reason for this. L-3,3',5-Triiodothyronine was added to increase the rate of cell metabolism. Due to the high synthetic rate of the fibroblasts, extra L-glutamine, which is an energy carbon source for nucleic acid synthesis, was added in the form of the more stable GlutamaxTM that does not easily degrade to ammonia, a compound that adversely affects cell cultures. An antioxidant (glutathione (reduced)) was added to prevent oxidative stress in the cells. Most of these

components were added only after they had been determined to either significantly increase the strength or thickness of cell-derived matrices in pilot studies. The near-optimum concentrations of these components for producing the best combination of increased strength and thickness were determined separately in preliminary studies (data not shown), although a full combinatorial media optimization study was beyond the scope of this study.

The much higher strength of the **CDMs compared to the *CDMs appears to have resulted from the lowered concentration of growth factors (bFGF and especially EGF) in the feeding media over time. This effect was not duplicated by adding a low concentration of fresh growth factors at every feeding instead (data not shown). It is possible that the matrices developed mostly in thickness for the first part of the growth period followed by development in strength for the remainder of the growth period, since, although EGF stimulates the growth and production of non-collagenous proteins, it inhibits the transcription of type 1 collagen genes and high bFGF concentrations favor enhanced cell proliferation over enhanced ECM strengthening (Kurata and Hata, 1991). Thus a decrease in growth factor concentration over time could increase the strength of the ECM by the resulting increase in collagen production. This leads to a hypothesis that cell-derived matrices that grow thicker have a greater fraction of proteins and other ECM components other than collagen, while cell-derived matrices that grow stronger but thinner in the same period of time have a greater fraction of collagen. In this study, although the fibroblasts in the *CDMs synthesized significantly more ECM than the fibroblasts in the **CDMs, the **CDMs had significantly more total amount of collagen than the *CDMs. Further studies would need to be performed to determine if similar

results might be obtained if a relatively high concentration of growth factors promoting growth is used during the first part of the culture period, followed by a much lower concentration of these growth factors and possibly even the addition of growth factors that promote strengthening such as TGF- β 1. Many growth factors, including bFGF, can accumulate and retain their activity for relatively long periods of time within ECM (Aktas and Kayton, 2000; Bottaro *et al.*, 2002), and thus some of the growth factors might have accumulated in the ECM during the first part of the culture period and used later as the matrix developed. The lowered growth factor concentration over time may also approximate what occurs naturally *in vivo* during the wound healing response (Xing *et al.*, 2003; Diegelmann and Evans, 2004), where the high concentration of growth factors in a fresh clot decreases over time as it is invaded and reconstructed by fibroblasts.

The cell-derived matrices produced in this study have potential in being used as soft connective tissue substitutes since they are produced solely from cells fed with a chemically-defined medium that does not contain any animal components, and they could be made strong and thick enough for certain tissue replacement applications within a matter of weeks. Tissue substitutes produced solely from fibroblasts have been developed by other groups, such as the completely biological human blood vessels developed by Auger *et al.* (L'Heureux *et al.*, 1998; Auger *et al.*, 2000), but these matrices have taken several months to grow, are fed with serum, and usually involve stacking several matrices together, thus changing some of the self-produced aspects of the matrix. The higher thermal and enzymatic stability and mechanical integrity of cell-derived matrices over

both collagen and fibrin gels may allow them to retain their structural integrity longer in *in vivo* conditions. Their high strength and stability could allow them to one day be used as alternatives to soft connective tissue and load-bearing tissue. Cell-derived matrices might also serve as *in vitro* biological models for the effects of nutritional components and pharmaceutical products on the growth and development of soft connective tissue, as well as for numerous *in vivo* conditions and processes such as wound healing, connective tissue formation, and development and interaction of different cells and tissues in a soft connective tissue environment.

References

- Abe, K., Takayanagi, M. and Saito, H. (1990) A comparison of neurotrophic effects of epidermal growth factor and basic fibroblast growth factor in primary cultured neurons from various regions of fetal rat brain. *Jpn J Pharmacol* 54(1): 45-51.
- Aktas, G. and Kayton, R. (2000) Ultrastructural immunolocalization of basic fibroblast growth factor in fibroblasts and extracellular matrix. *Histochem Cell Biol* 113(3): 227-33.
- Auger, F.A., Pouliot, R., Tremblay, N., Guignard, R., Noel, P., Juhasz, J., Germain, L. and Goulet, F. (2000) Multistep production of bioengineered skin substitutes: sequential modulation of culture conditions. *In Vitro Cell Dev Biol Anim* 36(2): 96-103.
- Basu, A., Rodeck, U., Prendergast, G.C. and Howe, C.C. (1999) Loss of insulin-like growth factor I receptor-dependent expression of p107 and cyclin A in cells that lack the extracellular matrix protein secreted protein acidic and rich in cysteine. *Cell Growth Differ* 10(11): 721-8.
- Bettger, W.J., Boyce, S.T., Walthall, B.J. and Ham, R.G. (1981) Rapid clonal growth and serial passage of human diploid fibroblasts in a lipid-enriched synthetic medium supplemented with epidermal growth factor, insulin, and dexamethasone. *Proc Natl Acad Sci U S A* 78(9): 5588-92.
- Billiar, K., Odlum, K., Govignon, E., Bachrach, N. and Ronfard, V. (2000) *Mechanical characterization of the growth and development of a human extracellular matrix*.
 Biomedical Engineering Society Annual Fall Meeting, Seattle, WA.

- Bottaro, D.P., Liebmann-Vinson, A. and Heidaran, M.A. (2002) Molecular signaling in bioengineered tissue microenvironments. *Ann N Y Acad Sci* **961**: 143-53.
- Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* 72: 248-54.
- Bradshaw, A.D., Puolakkainen, P., Dasgupta, J., Davidson, J.M., Wight, T.N. and Helene Sage, E. (2003) SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol 120(6): 949-55.
- Brenner, K.A., Corbett, S.A. and Schwarzbauer, J.E. (2000) Regulation of fibronectin matrix assembly by activated Ras in transformed cells. *Oncogene* 19(28): 3156-63.
- Butt, R.P., Laurent, G.J. and Bishop, J.E. (1995) Collagen production and replication by cardiac fibroblasts is enhanced in response to diverse classes of growth factors. *Eur J Cell Biol* 68(3): 330-5.
- Calve, S., Dennis, R., Kosnik, P., Grosh, K. and Arruda, E. (2003) *Engineering of Functional Tendon*. ASME Summer Bioengineering Conference, Key Biscayne, FL, ASME.
- Carlson, E.C., Mamiya, K., Liu, C.Y., Gendron, R.L., Birk, D.E., Funderburgh, J.L. and Kao, W.W. (2003) Role of Cys41 in the N-terminal domain of lumican in ex vivo collagen fibrillogenesis by cultured corneal stromal cells. *Biochem J* 369(Pt 3): 461-8.

- Christiansen, D.L., Huang, E.K. and Silver, F.H. (2000) Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. *Matrix Biol* **19**(5): 409-20.
- Clark, R.A., McCoy, G.A., Folkvord, J.M. and McPherson, J.M. (1997) TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. *J Cell Physiol* **170**(1): 69-80.
- Clark, R.A.F. (1996) *The molecular and cellular biology of wound repair*. New York, Plenum Press.
- Delany, A.M. and Brinckerhoff, C.E. (1992) Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts. *J Cell Biochem* **50**(4): 400-10.
- Diegelmann, R.F. and Evans, M.C. (2004) Wound healing: an overview of acute, fibrotic and delayed healing. *Front Biosci* **9**: 283-9.
- Edwards, C.A. and O'Brien, W.D., Jr. (1980) Modified assay for determination of hydroxyproline in a tissue hydrolyzate. *Clin Chim Acta* **104**(2): 161-7.
- Elsdale, T. and Bard, J. (1972) Collagen substrata for studies on cell behavior. *J Cell Biol* **54**(3): 626-37.
- Feng, Z., Yamato, M., Akutsu, T., Nakamura, T., Okano, T. and Umezu, M. (2003) Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering. *Artif Organs* 27(1): 84-91.

Freshney, R.I. (2000) Culture of Animal Cells. New York, Wiley-Liss.

- Geesin, J.C., Gordon, J.S. and Berg, R.A. (1993) Regulation of collagen synthesis in human dermal fibroblasts by the sodium and magnesium salts of ascorbyl-2phosphate. *Skin Pharmacol* 6(1): 65-71.
- Ghahary, A., Tredget, E.E., Mi, L. and Yang, L. (1999) Cellular response to latent TGFbeta1 is facilitated by insulin-like growth factor-II/mannose-6-phosphate receptors on MS-9 cells. *Exp Cell Res* 251(1): 111-20.
- Gibson, D. and Lang, F. (1979) Is embryonic Limulus heart really myogenic? *American Zoologist* **19**: 39-51.
- Gildner, C.D. and Hocking, D.C. (2003) Fibronectin polymerization enhances the tensile mechanical properties of cell-imbedded collagen gels. 2003 Summer Bioengineering Conference, Key Biscayne, Florida.
- Gillery, P., Maquart, F.X. and Borel, J.P. (1986) Fibronectin dependence of the contraction of collagen lattices by human skin fibroblasts. *Experimental cell research* 167(1): 29-37.
- Girton, T.S., Oegema, T.R., Grassl, E.D., Isenberg, B.C. and Tranquillo, R.T. (2000)
 Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. *Journal of Biomechanical Engineering* 122(3): 216-23.
- Gospodarowicz, D., Ferrara, N., Schweigerer, L. and Neufeld, G. (1987) Structural characterization and biological functions of fibroblast growth factor. *Endocr Rev* 8(2): 95-114.
- Grinnell, F. (1994) Fibroblasts, myofibroblasts, and wound contraction. *J Cell Biol* **124**(4): 401-4.

- Grinnell, F. (2003) Fibroblast biology in three-dimensional collagen matrices. *Trends Cell Biol* **13**(5): 264-9.
- Grinnell, F., Fukamizu, H., Pawelek, P. and Nakagawa, S. (1989) Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in longterm cultures supplemented with ascorbic acid. *Exp Cell Res* 181(2): 483-491.
- Hata, R. and Senoo, H. (1989) L-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissuelike substance by skin fibroblasts. *J Cell Physiol* 138(1): 8-16.
- Hoerstrup, S.P., Zund, G., Schnell, A.M., Kolb, S.A., Visjager, J.F., Schoeberlein, A. and Turina, M. (2000) Optimized growth conditions for tissue engineering of human cardiovascular structures. *Int J Artif Organs* 23(12): 817-23.
- Hoerstrup, S.P., Zund, G., Ye, Q., Schoeberlein, A., Schmid, A.C. and Turina, M.I.
 (1999) Tissue engineering of a bioprosthetic heart valve: stimulation of
 extracellular matrix assessed by hydroxyproline assay. *Asaio J* 45(5): 397-402.
- Huang, D., Chang, T.R., Aggarwal, A., Lee, R.C. and Ehrlich, H.P. (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblastpopulated collagen matrices. *Annals of Biomedical Engineering* 21(3): 289-305.
- Hukins, D.W.L. (1982) Biomechanical properties of collagen. *Collagen in Health and Disease*. Weiss, J.B. and Jayson, M.I.V. Edinburgh, Churchill Livingstone: 49-72.
- Ishikawa, O., Kondo, A., Okada, K., Miyachi, Y. and Furumura, M. (1997)
 Morphological and biochemical analyses on fibroblasts and self-produced
 collagens in a novel three-dimensional culture. *Br J Dermatol* 136(1): 6-11.

- Karnovsky, M.S. (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. *Journal of Cell Biology* 27: 137A.
- Kessler, D., Dethlefsen, S., Haase, I., Plomann, M., Hirche, F., Krieg, T. and Eckes, B.
 (2001) Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. *J Biol Chem* 276(39): 36575-85.
- Klueh, U., Goralnick, S., Bryers, J.D. and Kreutzer, D.L. (2001) Binding and orientation of fibronectin on surfaces with collagen-related peptides. Student Research Award in the Masters Science Degree Candidate category, 27th annual meeting of the Society for Biomaterials, St. Paul, MN, April 24-29, 2001. *J Biomed Mater Res* 56(3): 307-23.
- Kondo, H., Matsuda, R. and Yonezawa, Y. (1993) Autonomous migration of human fetal skin fibroblasts into a denuded area in a cell monolayer is mediated by basic fibroblast growth factor and collagen. *In Vitro Cell Dev Biol Anim* 29A(12): 929-35.
- Kurata, S. and Hata, R. (1991) Epidermal growth factor inhibits transcription of type I collagen genes and production of type I collagen in cultured human skin fibroblasts in the presence and absence of L-ascorbic acid 2-phosphate, a long-acting vitamin C derivative. *J Biol Chem* 266(15): 9997-10003.
- Kurata, S., Senoo, H. and Hata, R. (1993) Transcriptional activation of type I collagen genes by ascorbic acid 2-phosphate in human skin fibroblasts and its failure in cells from a patient with alpha 2(I)-chain-defective Ehlers-Danlos syndrome. *Exp Cell Res* 206(1): 63-71.

Laplante, A.F., Germain, L., Auger, F.A. and Moulin, V. (2001) Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to longstanding questions. *Faseb J* 15(13): 2377-89.

Leibovitz, A. (1963) Am. J. Hygiene 78: 173.

- L'Heureux, N., Paquet, S., Labbe, R., Germain, L. and Auger, F.A. (1998) A completely biological tissue-engineered human blood vessel. *Faseb J* **12**(1): 47-56.
- Milewski, C., Fedorowski, A., Stan, A.C. and Walter, G.F. (1998) [Basic fibroblast growth factor (b-FGF) in the perimatrix of cholesteatoma]. *Hno* **46**(9): 804-8.
- Neidert, M.R., J, W.J. and Tranquillo, R.T. (2002) Development and characterization of improved tissue engineered valve-equivalents using chemical and mechanical signaling. Second Joint EMBS/BMES Conference, Houston, TX, IEEE.
- Ohgoda, O., Sakai, A., Koga, H., Kanai, K., Miyazaki, T. and Niwano, Y. (1998)
 Fibroblast-migration in a wound model of ascorbic acid-supplemented threedimensional culture system: the effects of cytokines and malotilate, a new wound healing stimulant, on cell-migration. *J Dermatol Sci* 17(2): 123-31.
- Parenteau, N. (1994) Skin Equivalents. *Keratinocyte Methods*. Leigh, I. and Watt, F., Cambridge University Press: 45-54.
- Parry, D.A. (1988) The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. *Biophys Chem* 29(1-2): 195-209.
- Pouliot, R., Larouche, D., Auger, F.A., Juhasz, J., Xu, W., Li, H. and Germain, L. (2002)
 Reconstructed human skin produced in vitro and grafted on athymic mice.
 Transplantation 73(11): 1751-7.

- Ramshaw, J.A., Casagranda, F., White, J.F., Edwards, G.A., Hunt, J.A., Williams, D.F. and Werkmeister, J.A. (1999) Effects of mesh modification on the structure of a mandrel-grown biosynthetic vascular prosthesis. *J Biomed Mater Res* 47(3): 309-15.
- Ramshaw, J.A., Werkmeister, J.A. and Glattauer, V. (1996) Collagen-based biomaterials. *Biotechnol Genet Eng Rev* 13: 335-82.
- Roeder, B.A., Kokini, K., Sturgis, J.E., Robinson, J.P. and Voytik-Harbin, S.L. (2002) Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. *J Biomech Eng* **124**(2): 214-22.
- Sannes, P.L., Khosla, J. and Peters, B.P. (1997) Biosynthesis of sulfated extracellular matrices by alveolar type II cells increases with time in culture. *Am J Physiol* 273(4 Pt 1): L840-7.
- Seliktar, D., Black, R.A., Vito, R.P. and Nerem, R.M. (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. *Annals of Biomedical Engineering* 28(4): 351-362.
- Senoo, H. and Hata, R. (1994) Extracellular matrix regulates and L-ascorbic acid 2phosphate further modulates morphology, proliferation, and collagen synthesis of perisinusoidal stellate cells. *Biochem Biophys Res Commun* 200(2): 999-1006.
- Shipley, G.D. and Ham, R.G. (1983) Multiplication of Swiss 3T3 cells in a serum-free medium. *Exp Cell Res* 146(2): 249-60.
- Siddiqui, A.A., Jaffar, T., Khan, N., Azami, R. and Waqar, M.A. (1992) Effect of dexamethasone on collagen synthesis in fibroblasts cultured in collagen lattice. *Biochem Soc Trans* 20(2): 207S.

- Tuan, T.L., Song, A., Chang, S., Younai, S. and Nimni, M.E. (1996) In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. *Exp Cell Res* 223(1): 127-34.
- Tucker, R.P., Hammarback, J.A., Jenrath, D.A., Mackie, E.J. and Xu, Y. (1993) Tenascin expression in the mouse: in situ localization and induction in vitro by bFGF. J Cell Sci 104 (Pt 1): 69-76.
- Vaccariello, M.A., Javaherian, A., Parenteau, N. and Garlick, J.A. (1999) Use of skin equivalent technology in a wound healing model. *Methods in Molecular Medicine, Vol. 18: Tissue Engineering Methods and Protocols*. Morgan, J.R. and Yarmush, M.L. Totowa, NJ, Humana Press Inc. 18: 391-405.
- Venable, J.H. and Coggesmall, R. (1965) A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25: 407-408.
- Warshamana, G.S., Martinez, S., Lasky, J.A., Corti, M. and Brody, A.R. (1998)
 Dexamethasone activates expression of the PDGF-alpha receptor and induces
 lung fibroblast proliferation. *Am J Physiol* 274(4 Pt 1): L499-507.
- Winston, F.K., Macarak, E.J., Gorfien, S.F. and Thibault, L.E. (1989) A system to reproduce and quantify the biomechanical environment of the cell. *Journal of Applied Physiology* 67(1): 397-405.
- Xing, B.R., Li, T.Z., Bian, H.N., Qi, S.H., Xie, J.L., Xu, Y.B. and Hu, X.G. (2003) [Comparison of the effects of rhEGF with rhbFGF on the acceleration of wound healing]. *Zhonghua Shao Shang Za Zhi* 19(6): 340-3.
- Zhu, Y., Oganesian, A., Keene, D.R. and Sandell, L.J. (1999) Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular

matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP-2. *J Cell Biol* **144**(5): 1069-80.

Zoppi, N., Ghinelli, A., Gardella, R., Barlati, S. and Colombi, M. (1998) Effect of dexamethasone on the assembly of the matrix of fibronectin and on its receptors organization in Ehlers-Danlos syndrome skin fibroblasts. *Cell Biol Int* 22(7-8): 499-508.

Appendix 1: Cell-Derived Matrix Protocol

Thawing Cells (for 1M cells):

- 1. Add 16ml of *Growth Media* into a T75 flask and place into 10% CO₂ incubator for 30min.
- 2. Add 3ml of *Growth Media* to a 15ml polypropylene *conical tube*, and place in water bath
- 3. Thaw cryovial w/ cells in 37°C waterbath + agitate in hand
- 4. Slowly add some *Growth Media* from *conical tube* to just thawed cells in cyovial
- 5. Mix, pipette out, and place cells in *conical tube* + repeat (rinse cryovial w/ more media)
- 6. Place the cells into T75 flask in the incubator
- 7. Replace media with 15ml of fresh *Growth Media* after 24h (see <u>Feeding Cells</u> below)

Feeding & Passaging Cells:

- 1. Feed cells 2x / week with same amount of *Growth Media* (replace) until 90% confluent.
- When 90% confluent (takes ~1 week), aspirate media + add 1/3 of media amount (5ml into a T75 flask; 8ml into a T150 flask) of 0.05% Trypsin-EDTA
- 3. Place in incubator until cells have detached (5-15min) + crack lid to vent
- 4. Denature Trypsin with same amount of *Growth Media* and put entire solution into a 50ml polypropylene *tube*
- 5. Repeat for all flasks + go back thru and rinse all flasks with 10ml of *Growth Media*
- 6. Do a <u>Cell Count</u> on each tube
- 7. Centrifuge tubes at 1,000rpm for 6min
- 8. Aspirate supernatant

 Based on *Cell count*, dilute cells w/ *Growth Media* to a concentration of ~ 1M / 25ml (1M / 25ml in a T150 flask) and seed into flasks

Freezing Cells:

Identical to Steps 2-8 of Feeding & Passaging Cells Protocol, then:

9. Based on *Cell count*, dilute cells w/ *Cryo Media* to a concentration of 1M / ml

10. Put 1ml of solution / cryovial

11. Place cryovials in Styrofoam and put into -80°C freezer for a few days, and then store in liquid nitrogen

Cell-Derived Matrix (CDM):

Identical to Steps 2-8 of Feeding & Passaging Cells Protocol, then:

- 9. Based on *Cell count*, dilute cells w/ *CDM Media* to a concentration of: a) *for wells:* 2M / 5ml;
 b) *for TransWells:* 2M / 2ml.
- 10. a) *For wells*: put 5ml of *CDM Media* w/ cells into the wells; b) *For TransWells*: Put 3ml of *CDM Media* under wells, and 2ml of *CDM Media* w/ cells onto the TransWells.
- 11. Feed cells every 2 days with same amount of CDM Media: a) for wells: 5ml;

b) for TransWells: 2ml above, 3ml below.

Growth Media: DMEM + 10% BCS + 1% Pen/Strep/AmphotericinB (37°C)

Cryo Media: DMEM + 10% BCS + 10% DMSO

CDM Media – 500ml:

- 3:1 DMEM : Ham's F12 + 1% Pen/Strep/AmphotericinB 360ml : 120ml + 5ml
- 4 x 10⁻³M Glutamax (10ml/500ml) 10ml
- 8.61 x 10⁻⁷ M Insulin (0.25ml/500ml) 250µl

From -20°C Freezer:

- $1.0 \times 10^{-4} M E$ thanolamine $(500X = 3\mu l/ml)$.
- $5.2 \times 10^{-4} M L$ -ascorbic acid phosphate magnesium salt n-hydrate (500X = 75 mg/ml).
- $3.3 \times 10^{-6} M$ Glutathione (reduced) ($500X = 500 \mu g/ml$)
- $1.0 \times 10^{-7} M$ Dexamethasone (500X = 19.7µg/ml).
- $3.9 \times 10^{-8} M$ Selenious Acid ($500X = 2.5 \mu g/ml$).
- $2.0 \times 10^{-10} M L$ -3,3',5-Triiodothyronine(dissolve in EtOH first) (500X = 67.5 ng/ml).
- $2.8 \times 10^{-10} M \, bFGF \, (500X = 2.5 \mu g/ml \text{ in } 1X \, PBS) 10 \mu g \text{ in } 4ml \, 1X \, PBS.$
- $4.2 \times 10^{-10} M EGF (500X = 1.25 \mu g/ml in 1X PBS with 2.5g/L Serum Albumin) -$

100µg + 0.2g Human Serum

Albumin in 80ml 1X PBS.

Cell Count:

- Pipette 100µl of cell suspension + 100µl of 0.04% trypan blue into an Eppendorf tube
- *Pipette out 10µl of mixture and put into hematocytometer*
- Cell count: # of cells / ml = 20,000 x Average # of cells / Quadrant

Appendix 2: BIOMECHANICAL ANALYSIS PROTOCOL

- Remove media from wells and fill wells with ddH₂O. After 5 minutes, remove ddH₂O and add new ddH₂O for 30 minutes. (The ddH₂O lyses the cells due to the high osmotic pressure built up in the cells due to the low osmolarity of the ddH₂O relative to the inside of the cells. This eliminates the contractile forces otherwise produced by the fibroblasts, and allows the samples to be mechanically tested without contracting into themselves. The lysing of the cells releases lysosomes into the ddH₂O that might negatively affect the matrix. The ddH₂O is therefore changed after 5 minutes to decrease the concentration of the lysosomes.)
- After 30 minutes, remove ddH₂O from wells and replace with room temperature 1X phosphate buffered saline (PBS). (This equilibrates the samples for biomechanical testing.)
- 3. Measure and record the thickness of each sample with the laser displacement system of the mechanical membrane inflation device after being slightly compressed by the small reflective disk (1.3g, 1.3cm diameter) for 1 minute. (This is to reduce the error due to the hydration state of the samples. The software program can be made to display the thickness by setting the 0 value for the small reflective disk on the flat stage *before* placing any samples between the disk and the flat stage. Make sure the laser is centered on the reflective disk.)
- 4. After all thicknesses have been measured, remove the flat stage and adjust the height of the laser so that the faceplate gives a reading of 0 height. Center the laser over the 1cm diameter opening in the faceplate. Place one sample at a time

over the 1cm diameter opening for mechanical testing. Make sure that the sample lies flat and over the O-ring channel. Place O-ring over the sample without moving it, and then clamp it down. (During clamping, the entire circumference of the sample is forced into the O-ring channel on the faceplate, which will prevent "waffling" of the sample in the test region. An even clamping force is created around the circumference of the sample by the clamping plate, which is also guided and kept from rotating relative to the sample by two pins.)

- 5. Start data acquisition on the computer, and inflate the samples with PBS at a constant rate of 1 ml/min (thinner samples need a higher rate, while a lower rate can be used for thicker samples for greater accuracy). When the sample bursts, stop the data acquisition and infusion pump. Record the size and location of the burst in the sample before replacing it with the next sample. (The tissue inflation device measures the displacement and pressure at which a sample bursts. The increasing pressure applied to the sample is measured by an on-board pressure transducer (model PX102-025GV, Omega Engineering, Stamford, CT). The displacement of the center of the cap is measured with a laser displacement system (LDS-080, Keyence, Woodcliff Lake, NJ).)
- Measure the Wet Weight of each sample, and then lyophilize overnight and measure the Dry Weight. Place in -80°C freezer for later biochemical analysis. (The -80°C temperature will help to prevent any collagen degradation.)

The sample is circularly clamped at and inflated through a 1cm diameter opening, thus causing the sample to form a spherical cap before failing.

• The maximum membrane tension, *T*, is calculated using the Law of Laplace for a spherical membrane:

$$T = \frac{1}{2} PR$$
,

where *P* is the pressure (conversion factor: $(133.3 \text{ N/m}^2)/\text{mmHg}$) when the tissue bursts and *R* is the corresponding radius at the point of rupture, calculated assuming a spherical cap geometry by:

$$R = \left(w^2 + a^2\right) / 2w,$$

where a is the radius of the clamp (5mm) and w is the displacement at the center of the sample at failure measured by the laser.

• The ultimate tensile strength (UTS) is calculated by:

UTS = T / t,

where *t* is the thickness of type-matched specimens before inflation. Since the thickness measurements are obtained after the samples have been isotonically compressed by a 1.3g weight for 1min, the error due to the hydration state of the samples is reduced. The actual thickness at the time of bursting is less than this value since the samples are inflated.

• The ultimate tensile strength per collagen density (UTS / Collagen Density) is calculated by:

UTS / Collagen Density = UTS / (Total Collagen /
$$\pi t(D/2)^2$$
)
= T / (Total Collagen / $\pi (D/2)^2$),

where D is the diameter of the constructs (2.4cm for TransWells). This value gives an accurate measure of strength of the constructs per unit of collagen since it is independent of the thickness of the samples.

• The failure strain is determined from the equibiaxial strain at the pole estimated from the displacement data using the approximate relationship:

Failure Strain
$$\approx 2/3 (w/a)^2 - 2/15 (w/a)^4 + 2/35 (w/a)^6$$
.

Appendix 3: BIOCHEMICAL ANALYSIS PROTOCOL

- Obtain wet weight of samples, lyophilize overnight, and then measure dry weight.
 Place lyophilized samples in -86°C freezer (to prevent collagen degradation) for later biochemical analysis, or go to next step.
- 2. Solubilize each lyophilized sample in 1ml pepsin (Sigma # P-6887)(1 mg/ml in 0.5M acetic acid (EMD Chemicals # AX0073P-5) and incubate overnight at 20°C with rotation. Centrifuge samples at 14000 rpm for 1 hour at 15°C, and transfer supernatant into separate 2ml Eppendorf tubes. (The pellet contains the remains of cells and ECM. The <u>supernatant</u> contains the soluble collagen. Collagen is soluble, so it will <u>not</u> go into the pellet. A high salt concentration (4M NaCl for samples with neutral pH, and 2M NaCl for samples in acetic acid) would be needed to precipitate the collagen out of solution.) Repeat this extraction step to achieve complete extraction of the pepsin and acid soluble fraction of collagen.
- 3. Combine the supernatants from the first and second extractions, and use 100µl of this to determine non-cross-linked collagen content with the Sircol[™] Assay (Biocolor, Belfast, N. Ireland). To confirm results, a 200 µl aliquot of the soluble collagen extract can be used to determine collagen content by hydroxyproline assay (NOTE: this value will be higher since it will include collagen that was degraded during growth).
- Use a 50µl aliquot of the extract to determine total non-collagenous protein content with the Tp-Blue[™] Total Protein Assay (Biocolor). Generate standard

curve by adding 5ml of reagent dye per tube, mixing with 0-500µl of the included bovine serum albumin, and reading at 595nm. Add the 50µl aliquot of the extract to 5ml of reagent dye, read at 595nm, and use standard curve to determine total protein content less collagen. Add this amount to the total collagen amount that will be obtained to get total protein amount.

- 5. Digest the remaining pellets with Proteinase K (Invitrogen # 25530-049), 50µg in 500µl solution of 10mM EDTA and 0.1M sodium phosphate (pH 6.5)(0.1M sodium phosphate is made by mixing 30ml 1M Na₂HPO₄ (Fisher # BP332-1), 70ml 1M NaH₂PO₄ (Fisher # BP329-1) and 900ml H₂O) overnight at 60°C. (Proteinase K is a serine protease with broad specifity towards aliphatic, aromatic and other hydrophobic amino acids. It digests all proteins into small peptides and makes them soluble. After digestion of the proteins, the DNA, proteoglycans and glycosaminoglycans are released into the solution.)
- Use a 100µl aliquot of the *supernatant* to determine sulfated glycosaminoglycan and proteoglycan content (not including hyaluronic acid) with the Blycan[™] Assay (Biocolor, Belfast, N. Ireland).
- 7. Use a 10µl aliquot of the *supernatant* to determine DNA content. The number of cells per sample can be calculated from the measured amount of DNA using Hoechst 33258 dye (Amersham Biosciences # 80-6226-87) and a DyNA Quant 200 fluorometer (Amersham, designed specifically for the quantification of low DNA concentrations using Hoechst 33258 dye, with a fixed excitation bandpass source (365 nm) and an emission bandpass filter (460 nm)) based on the known DNA content per cell of 8pg. Add 10µl sample to the cuvette with 2ml TNE

Buffer (10mM Tris, 200mM NaCI, 1mM EDTA, pH 7.4), mix, place cuvette in flurometer and read the concentration. Calibrate DyNA Quant 200 using 10ng Calf thymus DNA (add 10ng of standard DNA to the cuvette with 2ml TNE Buffer, mix, place cuvette in flurometer and press CALIB).

- Use a 200µl aliquot of the *supernatant* to estimate cross-linked collagen content with a hydroxyproline assay:
 - a) Hydrolyze each 200µl sample in 200µl of 12M HCl (final HCl concentration: 6.0M) in 1.5ml screw cap tubes for 16 hours at 110°C, followed by drying of the samples under vacuum.
 - b) Reconstitute samples (1-5 μg of hydroxyproline) to 2.0ml with <u>Assay</u> <u>Buffer</u>.

Assay Buffer consists of: 5g/l citric acid (Sigma # C1909), 1.2ml/l glacial acetic acid (EMD Chemicals # AX0073P-5), 12g/l sodium acetate (VWR # MK776804), and 3.4g/l sodium hydroxide (VWR # MK770810). (Stock Buffer contains 50g of citric acid (H₂O) (Sigma # C1909), 12ml of glacial acetic acid (EMD # AX0073P-5), 120g of sodium acetate (VWR # MK776804), 3H₂O and 34g of NaOH (VWR # MK770810) in 1.0 liter of solution. Stock Buffer solution is diluted tenfold with H₂O to make <u>Assay</u> <u>Buffer</u>.)

 c) Add 1.0ml of <u>Chloramine-T Reagent</u> and stand for 20 minutes at room temperature.

<u>**Chloramine-T Reagent</u>** is made from: 1.41g of chloramine-T (VWR # VW3506-0) dissolved in 20.7ml of H₂O and mixed with 26ml of *n*-</u>

propanol (VWR # MK303508) and 53.3ml of <u>Stock Buffer</u>. This reagent is stable at 4°C for 2 weeks.

 d) Add 1.0ml of freshly prepared <u>Dimethylaminobenzaldehyde Reagent</u> and mix throroughly.

Dimethylaminobenzaldehyde Reagent: 15g of *p*dimethylaminobenzaldehyde (Sigma # D-2004) is suspended in 60ml of *n*propanol (VWR # MK303508), and 26ml of 60% perchloric acid (VWR # EM-PX0396D-4) is added *slowly*. (Use a fume hood with protective goggles!)

- e) Incubate tubes at 60°C for 15 minutes, followed by cooling in tap water for 5 minutes.
- f) Measure the absorbance of each sample at 550nm within 45 minutes. Correlate absorbance readings with collagen amount using a standard curve and a conversion factor of 10µg collagen to 1µg 4-hydroxyproline. Create standard curve with known amounts of Trans-4-hydroxy-L-proline (Sigma # 56250) and hydrolyzed rat tail Collagen, Type 1 (Biocolor, Belfast, N. Ireland).

Appendix 4: Steps in Development of Chemically Defined Medium

A serum-free base medium was first developed based on a number of serum-free media from literature (Bettger *et al.*, 1981; Shipley and Ham, 1983; Parenteau, 1994; Vaccariello *et al.*, 1999) (see chart on next page). The effects on the tension, thickness, ultimate tensile strength (UTS) and failure strain of a number of components after 3 weeks in culture was determined in series. Apart from the last two sets of experiments, all samples were grown on the bottom of regular 6 well plates, unless otherwise indicated. Growth factors were added into the base medium at the beginning of each 3-week study. When a particular component was found to significantly increase the strength and thickness of the CDMs at a particular concentration, it continued to be added into the media at that concentration throughout the study. The chemically defined media formulation that was developed from all these studies is shown below (Ahlfors, 2003).

Comparent	Reason	Bettype et al., 1201	Shipley and Han, 1983	mad. et al., 1222	Humper of ., 1993	Purstanu, 1924	Veccendle et al., 1999	Fordiot et al., 2002	Murphy and Renfied, 2002	Cohrs et al., 2002	Administ DMEM	Bare Media	Abdreen, 2003
Base Media	bastic mutatienets + water	MCDB 110	MCDB 402	MEM	DMEM	3.1 DAVENG P12	31 DMEM/F12	31 DMBF12	31 DMBM/F12	F12 > DMEM	DOMENN	311 D04EM/#12	3-1 DMEM F12
Petral Borrino Server	While names of movusary matricents			10%	10% Nu-Serues		10%	10%		20% > 7%			
Glarose	Bring conce	13 ng/sl(0m00	1 mg/sd/0.55eM0?	I mg/mI/0.52mM0	45 mg/ml (25mM) Fourtone	45 mg/ml (25mM)	4.5 sig/sl (CfeM)	45 mg/ml (25mM)	45 sight (CheM)	$1.3n_{2}$ ini (10eM) $> 4.5n_{2}$ ini (25eM)	45 mg/ml (25mM)	45 mg/ml (25mM)	45 mg/ml (25mM)
L-Glutsereine	energy & carbon source for nucleur and grethesis	25 nM	24 mMP	2 mM	4 tsM	7.25 sM	7.25 mM	3.25 aM	3.25 #M + 4 mM Ghitesux	1 aM > 4 AM	n	3 25 sdd + 4 mM Gutosut	3.25 mM + 4 mM Gutomu
Hipei	pH stability	30 mM	20 #607	20 sild									
Дрозовы В	comprehensive light source	10.26 µg/ml	5 µ@!nl										
Albancia	entyrna stabilitær & carrier protein					20 Hofeed (0.30 JAK)?					400 µm/md (6.1µM)		
Buideneal Growth Flactor	cell proliferation, apregalator BCM protein pretensis (everyt collagen)	30 ng/nl (50mb)	5 ng/ml (0.33nM)			10 ng/m1(1.67mM)		10 ag/al (1 67aM)	5 ng/m0 (0.83mM)			10 ng/al (1.67nM)	2.5 ng/si (0.42nh0
Basic Ronoblast Growth Flactor	mittogenis protein de enhances cell probjeration; spregulates DNA synthesis		25 ng/m					100 - 10 Million (100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100					5 ng/sil (0.28nh0)
Platelet Derived Growth Platter	privite(pad mittogen/Or cells synthesizing connective fissue		25 ng/ed										
Progesterone	entianced transcription of certain genes						(MM)						
Maulter	gharoos & amino arid agrate	0.95 µm/ml (16.4µM)	300 ng/m1 (3.6µM)			5 µg(ml (26.1 µB/C)	5 µm/md (36 1µMf)	5 µg/ml (86.1µM)	5 µg/md (26 1µMd)		10 µg/ml (172µM)	5 µg/ml (26.1 µM)	5 µg/m1 (26.1 µB/t)
DUISINGTHUSONO 0	all proliferation; increases filromentic prefress; spregulates PDGF receptor wBMA	1963 ng/nl (2004M)	1963 ng/ml (SuM)										OMn001) Inign E.9E
Rehonomische	prolightation of certain cell lines, including BiLa cells and kenatinoptes		362.5 ng/ml (JuM)			400 ng/nd (1.1µM)	7	400 ng/nd (11µM)	400 sg/si (1.1µM)			400 ng/sd (1.1µM)	10.00000000000000000000000000000000000
L-3,3',5-Thilodothgroning	Instructions water of cell methodolism		no effect			13.5 pg/el (20)M0	13.5 pp/id/00pM0	1346 p.p/ml (24M)	13.5 pg/ml (20pM)			(Mg00) http://www.	135 gg/ml (200560)
Телирбенин	more transport regulation		too effect			5 µg/s4 (02.54MO	5 µg/m1 (62.5mM)	5 µg/el (02.5eM)	5 µg/m0 (62.5mM)		7.5 µg/el	5 µg/s4 (62.5nM)	
BRANOGARINE	widely used light, thosticit pathway preservor		no effect			6.1 µg/s4 (100µM)	6.1 µg/sd (100µM0	0.000 (M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	6.1 µg/m0(100µM0		1.9 µg/s/(31.1µ00)	6.1 µg/s/ (100µM)	6.1 µg/s4 (100µM)
G-Phogykoryfethenofaethe	liptid, invested pathway pressares		no effect			141 µg/id(100µM0	14.1 µg/s/(()00µM0		14.1 µg/e1()00µM()			141 µg/is/(100µM0	
Salverices Artif	menusus glutafficine perovidase activity (lack of inhibits DNA and RNA grithuis).				53	63 ng/nJ (33nh)	6.5 ng/sil (33nM)		6.8 ng/sd (33nM)		5 ng/ml (39mM)	5 ng/sil (39nM)	5 rayed (39uM)
Autorbic Acid	Increases transcription of collagen genes			00 µg/ml (259 µ00)	20 µg/s4 (259µM)			30 µg/m3 (259 µM)	Onupoli (175) Initian OK	100 µg/ml (577µM)	25 µg/m (145µ00)	20 µg/44 075µM0	130 µg/m0/19/M0
L-Protine	collagen bushding block								214 µg/stl () 26sM()				
Glacina	collagere basilding block								114 µg/ed (1.52eM)				
L-Opsteine	eventes allungides the lagues in de between BCD6 proteins												
Copper Soffste	essential metal, but eauers oridating these				21 JuM						125 ag/s1		
Software Software	Increases electrochemical gradient across cell membranes				M4 053							5,555	
Ditheotherator	stabilitaes engrees and other proteins containing saffiguary groups	6.5 µM											
Photphoenolypnuste	presence for ADP, generate, and oraloanetate	IO µM											
Prostoglandh Bl	activates aderphate cyclese activity	25 tM											
Prostaglandin P2 n	sthead after cubleP formation	2 μΜ											
(Boristhicone (Nucleured)	antionidant; protects cells from DNA damage and oridative shess	199.7 ng/ml (650ml)									1 µg/s4(3.25µM)	1 µg/sd (3.25µM0	1 µg/s4 (5.25µM)
Alkerine	ATP/ADP conponent					130 µM	180 JM	243 µ2/40					
Showthee Chloride	entrecelluler calcium-sensing receptor agonist					1 stM							
Ammonium Matimensalate	regulation mitrogenice officers of insudin										100 yg/ml		
Mangaroos Chlorida	modulates oridative events in cells										X0 pg/m		
Choken Torih	otheofatus ookeeplate cyclase pathwap							100 pM					
Educoblect Sonece						Demais	Dermis	Dennis	Elemen necessarial forestein	Bovine Achilles Tendon			Husson neonstell fore skin
Designed For		Fibroblast peakferation	Fibroblast geakfertion	3-D ECM growth	Lignment equivalent FPCL F	Theoblasts + Electinocytes	Phrobhets + Keekkorytes	Fibroblasts + Kestimooytes	Fibroblests + Kereteorytes	Tension equivalent	Seven-free Growth	H.	ost 3-D ECM gowth + Strength
Georeth Trans				4.6 weeks	12 weeks				2.5 Weeks	14 days > 25 days			3 wreeks
Thickness									60 - 120+ µm				230 µm (400 µm)
073					140 tPa				265 M/m	$200kF_{\rm H} \sim 2.2MF_{\rm H}$			700+ kPa (300 kPa)
Physic Dissector				70 mm						60.000			40 H
Mechanical Stirutation		1		NO	UNIAXIAL				ND	CYCLIC STRAIN, UNIADIAL			NO

The first component that was tested was **L-ascorbic acid phosphate magnesium salt** *n***-hydrate (Wako Pure Chemicals, Japan). L-ascorbate at 50 µg/ml (289µM) has been found to significantly increase fibroblast growth and ECM synthesis by upregulating the expression of proalpha(1)(I) and proalpha(2)(I) collagen (Grinnell** *et al.***, 1989; Hata and Senoo, 1989; Huang** *et al.***, 1993; Kurata** *et al.***, 1993; Girton** *et al.***, 2000; Hoerstrup** *et al.***, 2000; Laplante** *et al.***, 2001; Pouliot** *et al.***, 2002). However, since Lascorbate breaks down within 24h in culture, a more stable form of L-ascorbate, Lascorbic acid 2-phosphate has been adopted in several studies (Hata and Senoo, 1989; Geesin** *et al.***, 1993; Kurata** *et al.***, 1993; Senoo and Hata, 1994; Ohgoda** *et al.***, 1998; Hoerstrup** *et al.***, 1999). A more stable form is L-ascorbic acid phosphate magnesium salt** *n***-hydrate, which has a more than one week stability in culture and has been found to be most effective for the production of ECM at a 1mM concentration for fibroblast cultures (Ishikawa** *et al.***, 1997).**

The three concentrations of L-ascorbic acid phosphate magnesium salt *n*-hydrate tested were: 50 μ g/ml (173 μ M), 150 μ g/ml (519 μ M), and 300 μ g/ml (1,038 μ M). After 4 weeks in culture, the wet weights (and dry weights) of these groups were:

	Sample 1 (mg)	Sample 2 (mg)	Sample 3 (mg)	Sample 4 (mg)	<u>Average (mg)</u>
50 μg/ml	31.7 (1.3)	30.7 (1.2)	32.1 (1.3)	31.3 (1.3)	31.5 (1.3)
150 µg/ml	32.6 (1.6)	31.8 (1.5)	32.8 (1.7)	32.4 (1.6)	32.4 (1.6)
300 µg/ml	30.3 (1.5)	29.8 (1.6)	30.7 (1.4)	30.4 (1.5)	30.3 (1.5)

According to the above results, $150 \ \mu\text{g/ml} (519\mu\text{M})$ of L-ascorbic acid phosphate magnesium salt *n*-hydrate appeared to cause the cell-derived matrix to produce the most extensive ECM. The relatively high wet weight to dry weight ratio of for the 50 $\mu\text{g/ml}$ (173 μ M) concentration indicated that these samples were more hydrated, while the other

two groups had more dense ECM presumably due to a greater fraction of the ECM being composed of collagen. Mechanical testing on these samples was not performed because the samples started curling up at around 2 weeks (experiment was repeated again, with the same results of curling) in culture due to polyethylene terephthalate treated cell culture wells (BD Biosciences) that were later determined not to be a good attachment surface for CDMs. From here onwards, 150 μ g/ml (519 μ M) of L-ascorbic acid phosphate magnesium salt *n*-hydrate was used in the medium.

The next two components that were tested were Galactose and Epidermal Growth Factor (EGF). For cultures grown over long periods of time, fructose or galactose has been used instead of glucose since fructose and galactose reduce the production of acidic metabolites since they do not break down to lactic acid and thus permit higher density cell cultures (Leibovitz, 1963; Huang et al., 1993). High glucose (4.5 mg/ml) DMEM was compared to low glucose (1 mg/ml) DMEM supplemented with 3.5 mg/ml galactose (galactose has same molarity as glucose) or 5.75 mg/ml galactose (due to high activity, cultures were expected to require more sugars). EGF, on the other hand, stimulates the growth and production of non-collagenous proteins, but also inhibits the transcription of type 1 collagen genes and thus a lower EGF concentration should increase the strength of the ECM (Kurata and Hata, 1991). A previous study had already indicated that 0.5 µg/ml of EGF resulted in the strongest cell-derived matrices, but they were so thin that they were difficult to handle and test. Ten times this amount, or 5 µg/ml of EGF, resulted in a weaker but much thicker cell-derived matrix, and had the best combination of strength and thickness of the all the groups. Double of this amount, or $10 \,\mu\text{g/ml}$ of EGF, resulted in slightly thicker but much weaker samples. The following experiment tested the effects of five times the 0.5 μ g/ml EGF amount, or 2.5 μ g/ml of EGF, versus the 5 μ g/ml of EGF that had the best combination of strength and thickness in the previous experiment. Samples with 0.5 µg/ml EGF and 1.0 µg/ml EGF were also grown in parallel with the above samples, but they were sill too thin after 3 weeks to be mechanically testable.

The results below indicate that galactose did not improve the thickness and significantly reduced the UTS of cell-derived matrices, and thus was not kept in the media formulations. The reduced UTS appears to be due to the high glucose in the other

samples inducing collagen cross-linking through the process of glycation. The 2.5 μ g/ml EGF concentration was thinner than the 5 μ g/ml concentration, but much stronger. Since both the tension and failure strain were also higher for the 2.5 μ g/ml EGF samples, it was determined that this concentration caused the best combination of properties, and was used in the medium from this point onwards.

<u>Sample</u>	<u>Thickness (mm)</u>	Displacement (mm)	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain
1a	0.085	2.40	37.5	523.7	0.15
1b	0.065	3.49	21.3	296.9	0.30
1c	0.065	3.19	25.3	352.4	0.25
4a	0.115	2.62	22.7	219.8	0.17
4b	0.100	1.76	31.9	308.7	0.08
4c	0.095	2.07	19.4	187.7	0.11
5a	0.095	4.46	15.1	150.7	0.47
5b	0.105	3.56	8.0	79.9	0.31
5c	0.100	2.84	19.7	196.6	0.20
6a	0.095	2.80	12.5	128.9	0.20
6b	0.085	2.81	7.3	75.9	0.20
6c	0.110	3.47	25.9	268.4	0.30

	<u>Thickness (mm)</u>	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain
2.5µg/ml EGF (Glucose)	0.072	28.0	391.0	0.23
5µg/ml EGF (Glucose)	0.103	24.7	238.7	0.12
5µg/ml EGF (Galactose)	0.100	14.2	142.4	0.33
5µg/ml EGF (1.5x Galactose)	0.097	15.2	157.7	0.23
<u>Standard</u>	0.012	8.5	118.2	0.08
Deviations	0.010	8.8	85.6	0.05
	0.005	5.9	58.8	0.14
	0.013	9.6	99.5	0.06
The fourth component that was tested was Dexamethasone. Dexamethasone at 1nM –100nM concentrations has been shown to significantly increase fibroblast cell proliferation in serum-free media (Bettger *et al.*, 1981; Shipley and Ham, 1983) by upregulating the PDGF-alpha receptor mRNA and protein (Warshamana *et al.*, 1998), which has been shown to significantly extend the dendritic network of fibroblasts in 3D matrices (Grinnell, 2003). Dexamethasone has also been shown to be involved in increasing ECM growth and strength in FPCLs (Siddiqui et al., 1992; Ramshaw et al., 1999). This appears to be due to the ability of dexamethasone to promote actin stress fiber formation and increased fibronectin matrix accumulation that aid in the more effective organization of the ECM (Zoppi et al., 1998; Brenner et al., 2000). Also, the increase in collagenase and stromelysin mRNA by EGF that degrade collagen is inhibited with the addition of dexamethasone (Delany and Brinckerhoff, 1992). However, dexamethasone also starts to downregulate the expression of proalpha(1)(I) collagen at around 100nM and higher concentrations, suggesting that the strength of the ECM produced by fibroblasts will start decreasing at higher than 100nM dexamethasone concentrations (Zoppi et al., 1998). The dexamethasone concentration should thus be kept at or below 100nM to retain the ECM growth and strengthening effects of dexamethasone. Also, since dexamethasone is a glucocorticoid as is hydrocortisone, hydrocortisone was removed from the medium in order to keep it simple.

The 3 concentrations of Dexamethasone that were tested were 1nM, 10nM, and 100nM. The 100nM concentration significantly increased the tension, thickness, and UTS of cell-derived matrices, and was thus added into the medium from this point onwards.

72

Interestingly, the 1nM concentration of Dexamethasone increased the thickness but not the tension of the samples, thus causing a decrease in the UTS of cell derived matrices.

<u>Sample</u>	<u>Thickness (mm)</u>	Displacement (mm)	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain	Dry Weight (mg)
J1	0.100	3.516	34.5	358.9	0.30	4.5
J2	0.110	2.739	33.4	347.1	0.19	4.7
J3	0.085	3.18	22.0	229.0	0.25	5.5
J4	0.090	6.372	24.5	254.6	0.98	5.2
K2	0.120	4.176	55.9	466.1	0.42	5
K3	0.115	4.176	59.7	497.5	0.42	5.6
K4	0.125	4.146	63.2	526.5	0.41	5.8
L1	0.120	2.769	69.3	577.6	0.19	4.8
L3	0.130	3.897	67.7	564.2	0.37	5
L4	0.125	4.104	67.6	563.3	0.41	5.2

Dexamethasone	Thickness (mm)	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain	Dry Weight (mg)
1 nM	0.096	28.6	297.4	0.43	5.0
10 nM	0.120	59.6	496.7	0.42	5.5
100 nM	0.125	68.2	568.4	0.32	5.0
Standard	0.011	6.3	65.2	0.37	0.5
Deviations	0.005	3.6	30.2	0.00	0.4
	0.005	1.0	8.0	0.11	0.2

The next set of components that were tested were the amino acids L-Proline and Glycine. The addition of L-Proline and Glycine would be expected to increase the synthesis of collagen in CDMs since L-Proline and Glycine are the major components of collagen (in a 100:68 ratio of Gly:Pro) that is the major structural protein that provides strength to extracellular matrices (Ramshaw *et al.*, 1996). In fact, Organogenesis, Inc. has been adding Glycine and L-proline (in an approximate 1:1 ratio) to their media that they use to produce Apligraf[™] and other products containing fibroblasts (Murphy and Ronfard, 2002).

The effects of 3 different concentrations of L-proline (and the corresponding concentration of Glycine to maintain a 100:68 ratio of Gly:Pro) were tested over a 3 week period: 0.3mM, 1mM, and 3mM. Unfortunately, all the 1mM samples (6 samples in all) curled up into little balls after approximately 1 week in culture. Although the 3mM samples had a slightly higher UTS, they had a significantly smaller tension, thickness, and failure strain than the 0.3mM samples. However, the 0.3mM samples had a much reduced UTS from the previous set of experiments (568.4 ± 8.0 kPa versus 422.1 ± 53.4 kPa), indicating that the addition of L-proline and Glycine caused the UTS of cell-derived matrices to decrease significantly. This observation indicated that the 1mM concentration most likely as well caused a decrease in the UTS from the previous set of experiments, even though the contraction of all the samples into balls indicated the possibility of a high presence of collagen. Thus, L-proline and Glycine were not added into the media.

<u>Sample</u>	Thickness (mm)	Displacement (mm)	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain	Dry Weight (mg)
G1	0.135	2.77	50.9	412.6	0.19	4.4
G2	0.140	3.58	56.8	460.6	0.31	5
G3	0.130	3.38	62.6	507.5	0.28	4.8
G4	0.115	2.75	50.3	407.6	0.19	4.4
G5	0.110	2.55	47.1	382.0	0.17	4.2
G6	0.110	2.90	44.7	362.2	0.21	4.7
H1 - H6	All 1 mM samples	contracted in the first w	veek			
11	0.080	2.84	39.3	501.8	0.20	3.8
13	0.075	2.74	33.4	426.5	0.19	4
14	0.080	2.60	39.8	507.5	0.17	4

100:60 G	Slycine:L-Proline				
L-Proline	<u>Thickness (mm)</u>	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain	Dry Weight (mg)
0.3 mM	0.123	52.1	422.1	0.23	4.6
3 mM	0.078	37.5	478.6	0.19	3.9
<u>Standard</u>	0.013	6.6	53.4	0.06	0.3
Deviations	0.003	3.5	45.2	0.02	0.1

The seventh component that was tested was the amino acid L-cysteine. L-cysteine would be expected to increase the mechanical strength of CDMs since it is known to increase ECM cross-linking through disulfide bridges and is involved in modulating the synthetic phenotype of fibroblasts (Sannes *et al.*, 1997; Basu *et al.*, 1999; Zhu *et al.*, 1999; Carlson *et al.*, 2003). It is also found in high concentrations in the protein SPARC that increases the tensile strength of collagen fibers by directing formation and maintaining the stability of these fibers (Bradshaw *et al.*, 2003).

The effects of the 3 different concentrations of L-cysteine that were tested were: 0.1mM, 0.3mM, and 3mM. These 3 groups were grown in parallel on 12-well plates (1M cells / well) for 3 weeks. Unfortunately, all the 1.0mM samples got infected with fungus. However, the results for the 0.3mM and 3mM samples indicate that the tension, thickness, and UTS might be fairly constant throughout the range of concentrations. Although these values were higher than in previous experiments, these increases appeared to be due to the higher density of cells used on the 12-well plate (1M/3.8cm² vs. 2M/9.6cm²), and thus the addition of L-cysteine did not appear to have any significant effect on these values on cell-derived matrices, and thus was not added to the medium being developed. However, the failure strain approximately doubles with the addition of 0.3mM of L-cysteine. Thus, the addition of L-cysteine could come in handy when the failure strain of cell-derived matrices would need to be significantly increased.

Jan-Eric W. Ahlfors

The eighth component that was tested was basic fibroblast growth factor. Basic fibroblast growth factor (bFGF) at 5-25ng/ml concentrations has been show to stimulate collagen production by fibroblasts in monolayers, and thus increasing the strength of the ECM produced by these fibroblasts (Shipley and Ham, 1983; Gospodarowicz *et al.*, 1987; Butt *et al.*, 1995). bFGF is thought to play an important role in normal tissue repair and wound healing, and is a potent mitogenic and chemotactic factor for fibroblasts, regulating proliferation and extracellular matrix (ECM) production by these cells (Milewski *et al.*, 1998; Aktas and Kayton, 2000). It has also been shown to mediate fibroblast migration (Kondo *et al.*, 1993). It is also a potent inducer of tenascin expression, which is involved in cell motility, cell proliferation, and tissue modeling (Tucker *et al.*, 1993). Also, since the mechanisms underlying the effects of epidermal growth factor (EGF) overlap with those of bFGF, the addition of bFGF allows a lower concentration of EGF to be used without diminishing any of the EGF's effects on ECM development (Abe *et al.*, 1990).

The effect of 5 μ g/ml of bFGF on the growth of cell-derived matrices was investigated over a 3-week time period. This is a standard amount used in media containing bFGF. Higher concentrations generally have more beneficial effects, but bFGF is very expensive. The addition of 5 μ g/ml of bFGF significantly increased the tension and UTS of cell-derived matrices, but not the thickness. Basic fibroblast growth factor was thus included in the medium from this point onwards.

79

<u>Sample</u>	<u>Thickness (mm)</u>	Displacement (mm)	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain
А	0.145	3.2	73.0	534.2	0.25
В	0.135	3.2	68.3	499.4	0.25
С	0.130	4.8	66.3	485.4	0.55
D	0.150	2.9	103.6	690.5	0.21
Е	0.140	3.2	96.0	639.9	0.25
F	0.160	3.3	93.7	624.4	0.27

<u>Thi</u>	<u>ickness (mm)</u>	Tension (N/m)	Ultimate Tensile Strength (kPa)	Failure Strain
No bFGF	0.137	69.2	506.4	0.35
µg/ml bFG	0.150	97.7	651.6	0.25
Standard	0.008	3.4	25.2	0.17
Deviations	0.010	5.2	34.6	0.03

The table below summarizes all the modification that were made to the medium and in what order. L-Cysteine (*) was grown in 12-well plates at a 20% higher density which resulted in higher values. The resulting medium was later simplified further by getting rid of the transferrin and O-Phosphorylethanolamine, since there was no solid literature to support the need of these components for the growth of cell-derived matrices. The concentration of L-3,3',5-Triiodothyronine was also increased by ten times to support the necessary increased rate of cell metabolism of the fibroblasts within cellderived matrices.

Component	Base Media	L-Ascorbate	Galactose	EGF	Dexamethasone	100:68 Glycine:L-Proline	L-Cysteine*	bFGF	Ahlfors, 2003
Base Media	3:1 DMEM:F12	3:1 DMEM:F12	3:1 DMEM:F12	3:1 DMEM:F12	3:1 DMEM:F12	3:1 DMEM:F12	3:1 DMEM:F12	3:1 DMEM:F12	3:1 DMEM:F12
Fetal Bovine Serum									
Glucose	4.5 mg/ml (25mM)	4.5 mg/ml (25mM)	1.0mg/ml + 3.5mg/ml Galactose	4.5 mg/ml (25mM)	4.5 mg/ml (25mM)	4.5 mg/ml (25mM)	4.5 mg/ml (25mM)	4.5 mg/ml (25mM)	4.5 mg/ml (25mM)
L-Glutamine	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax	3.25mM + 4mM Glutamax
Hepes									
Liposome B									
Albumin									
Epidermal Growth Factor	10 ng/ml (1.67nM)	10 ng/ml (1.67nM)	5 ng/ml (0.83nM)	2.5 ng/ml (0.42nM)	2.5 ng/ml (0.42nM)	2.5 ng/ml (0.42nM)	2.5 ng/ml (0.42nM)	2.5 ng/ml (0.42nM)	2.5 ng/ml (0.42nM)
Basic Fibroblast Growth Factor								5 ng/ml (0.28nM)	5 ng/ml (0.28nM)
Platelet Derived Growth Factor									
Progesterone									
Insulin	5 μg/ml (86.1μM)	5 μg/ml (86.1μM)	5 µg/ml (86.1µM)	5 μg/ml (86.1μM)	5 μg/ml (86.1μM)	5 μg/ml (86.1μM)	5 μg/ml (86.1μM)	5 μg/ml (86.1μM)	5 μg/ml (86.1μM)
Dexamethasone					39.3 ng/ml (100nM)	39.3 ng/ml (100nM)	39.3 ng/ml (100nM)	39.3 ng/ml (100nM)	39.3 ng/ml (100nM)
Hydrocortisone	400 ng/ml (1.1µM)	400 ng/ml (1.1µM)	400 ng/ml (1.1µM)	400 ng/ml (1.1µM)	-				
L-3,3',5-Triiodothyronine	13.5 pg/ml (20pM)	13.5 pg/ml (20pM)	13.5 pg/ml (20pM)	13.5 pg/ml (20pM)	13.5 pg/ml (20pM)	13.5 pg/ml (20pM)	13.5 pg/ml (20pM)	13.5 pg/ml (20pM)	135 pg/ml (200pM)
Transferrin	5 µg/ml (62.5nM)	5 µg/ml (62.5nM)	5 µg/ml (62.5nM)	5 µg/ml (62.5nM)	5 µg/ml (62.5nM)	5 µg/ml (62.5nM)	5 µg/ml (62.5nM)	5 µg/ml (62.5nM)	-
Ethanolamine	6.1 μg/ml (100μM)	6.1 μg/ml (100μM)	6.1 μg/ml (100μM)	6.1 μg/ml (100μM)	6.1 µg/ml (100µM)	6.1 µg/ml (100µM)	6.1 µg/ml (100µM)	6.1 µg/ml (100µM)	6.1 µg/ml (100µM)
O-Phosphorylethanolamine	14.1 µg/ml (100µM)	14.1 µg/ml (100µM)	14.1 µg/ml (100µM)	14.1 µg/ml (100µM)	14.1 µg/ml (100µM)	14.1 µg/ml (100µM)	14.1 µg/ml (100µM)	14.1 µg/ml (100µM)	-
Selenious Acid	5 ng/ml (39nM)	5 ng/ml (39nM)	5 ng/ml (39nM)	5 ng/ml (39nM)	5 ng/ml (39nM)	5 ng/ml (39nM)	5 ng/ml (39nM)	5 ng/ml (39nM)	5 ng/ml (39nM)
Ascorbic Acid	50 µg/ml (173µM)	150 µg/ml (519µM)	150 µg/ml (519µM)	150 µg/ml (519µM)	150 µg/ml (519µM)	150 µg/ml (519µM)	150 µg/ml (519µM)	150 µg/ml (519µM)	150 µg/ml (519µM)
L-Proline						25.9 μg/ml (225μM)			
Glycine						8.7 µg/ml (116µM)			
L-Cysteine							30.5 µg/ml (250µM)		
Copper Sulfate									
Sodium Sulfate									
Dithiothreitol									
Phosphoenolpyruvate									
Prostaglandin El									
Prostaglandin F2 a									
Glutathione (reduced)	1 µg/ml (3.25µM)	1 µg/ml (3.25µM)	1 µg/ml (3.25µM)	1 µg/ml (3.25µM)	1 µg/ml (3.25µM)	1 µg/ml (3.25µM)	1 µg/ml (3.25µM)	1 μg/ml (3.25μM)	1 µg/ml (3.25µM)
Adenine									
Strontium Chloride									
Ammonium Metavanadate									
Manganous Chloride									
Cholera Toxin									
TENSION	(23.1% increase	24.7 ± 8.8 N/m	14.2 ± 5.9 N/m	28.0 ± 8.5 N/m	68.2 ± 1.0 N/m	52.1 ± 6.6 N/m	88.1 ± 16.8 N/m	97.7 ± 5.2 N/m	156.9 ± 8.1 N/m
THICKNESS	in Dry Weight) →	$103 \pm 10 \ \mu m$	$100 \pm 5 \mu m$	$72 \pm 12 \ \mu m$	125 ± 5 μm	123 ± 13 μm	136 ± 6 µm	$150 \pm 10 \ \mu m$	225 ± 7 μm
UTS		238.7 ± 85.6 kPa	142.4 ± 58.8 kPa	391.0 ± 118.2 kPa	568.4 ± 8.0 kPa	422.1 ± 53.4 kPa	646.9 ± 123.3 kPa	651.6 ± 34.6 kPa	697.1 ± 36.1 kPa
FAILURE STRAIN		0.12 ± 0.05	0.33 ± 0.14	0.23 ± 0.06	0.32 ± 0.11	0.23 ± 0.06	1.06 ± 0.54	0.25 ± 0.03	0.31 ± 0.06

The results for cell-derived matrices seeded with 2.5million HFFs (for faster growth) on TransWells[™] and fed with the resulting medium for 3 weeks are shown below (as ^CDM). These are compared to CDMs and collagen gels that were grown in parallel to the ^CDMs and fed with the serum-supplemented medium. The results below show higher thickness but lower UTS values than for the previous experiment with bFGF (where the media was identical), indicating that TransWells promote the growth of thick CDMs but do not appear to increase the UTS. Starting cell number did not appear to have a significant effect (as long as cells are seeded at "superconfluent" densities) on the growth and strengthening of the chemically-defined medium fed samples. However, the higher starting cell number appear to cause a significant increase in the UTS of the serum-supplemented samples (both CDMs and collagen gels) – compare to CDMs and collagen gels in the reported (next) experiments where starting cell number was 2M.

CG

^CDM

0.0 -

CDM

CG

^CDM

0.0

CDM

Sample	Thickness (mm	Displacement (mm) Tension (N/m	n) <u>Ultimate</u>	Tensile Strength	(kPa) Failure S	train Wet Weight (mg)	Dry Weight (mg)
[D1]	0.110	3.91	38.5		320.8	0.37	24.7	1.8
[D2]	0.120	2.78	42.3		352.5	0.20	23.6	1.9
[D3]	0.130	3.22	47.7		397.5	0.26	24.5	1.9
(61)	0.100	2.20	11.0		100.0	0.07	20.7	1.0
[01]	0.100	3.29	11.9		109.0	0.27	29.7	1.0
[02]	0.110	2.00	27.0		270.5	0.17	20.4	1.7
[03]	0.120	2.00	29.3		2/0.5	0.20	20.0	1.0
[04]	0.100	3.08	20.7		252.0	0.14	20.0	1.0
[03]	0.110	2 20	23.2		214.2	0.24	30.4	1.7
[00]	0.110	2.20	20.2		214.2	0.12	00.4	
[A1]	0.190	3.63	104.8		532.9	0.32	87.0	3.0
[A2]	0.200	3.50	110.5		561.9	0.30	92.4	3.1
[A3]	0.200	3.43	119.2		606.1	0.29	88.1	3.2
	Thickness (mm	<u>l</u>	Tension (N/m	n) <u>Ultimate</u>	Tensile Strength	(kPa) Failure S	train Wet Weight (mg)	Dry Weight (mg)
10% FBS CDM CE	OM 0.120		42.8		356.9	0.27	24.3	1.9
10% FBS FPCL C	G 0.108		24.4		225.1	0.19	29.8	1.7
Ahlfors CDM ^CI	OM 0.197		111.5		566.9	0.30	89.2	3.1
	0.040					0.00		0.00
Standard	0.010		4.6		38.5	0.09	0.6	0.06
Deviations	0.008		6.4		59.5	0.06	1.1	80.0
	0.006		7.3		36.9	0.02	2.9	0.10
Wet Weight / Dry We	ight Total Prote	in (mg) Total	Collagen (mg) <u>%</u>	<u>Collagen</u>	Collagen Den	sity (mg/cm3)	UTS / Collagen Den	sity (kPa/mg/cm3)
13.7	1.4		0.92	68.1	18	3.5	17.	4
12.4	1.4		0.91	63.9	16	6.8	21.	0
12.9	1.4		0.96	67.4	16	6.3	24.	4
16.5	1.4		1.02	75.6	22	2.5	4.9	9
16.7	1.3		1.04	81.2	20).8	12.	3
18.0	1.2		0.98	81.7	18	3.1	15.	0
18.5	1.2		1.03	85.4	22	2.7	10.	9
18.6	1.3		1.03	80.8	20).7	12.	2
17.9	1.3		0.99	77.6	19	9.9	10.	8
								_
29.0	2.3		1.54	68.4	17	7.9	29.	7
29.8	2.3		1.60	68.8	17	′./	31.	8
27.5	2.4		1.50	65.0	17	.2	35.	2
Wet Weight / Dry We	ight Total Prote	in (ma) Total (Collagen (mg) %	Collagen	Collagen Den	sity (ma/cm3)	UTS / Collagen Den	sity (kPa/mg/cm3)
13.0	1 40	<u>in (ing)</u> iotai	0.93	66 5	17	7 2	20	q
17.7	1 26		1.01	80.4	20		11	0
28.8	2.33		1.57	67.4	17	7.6	32.	2
0.7	0.04		0.03	2.3	1	.1	3.5	5
0.9	0.06		0.02	3.4	1	.7	3.4	4
1.2	0.08		0.03	2.1	0	.3	2.7	7
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••
Insoluble Collagen Fractio	n (mg) Insoluble Col	agen Fraction (%)	Total Proteoglycans	and Glycosan	ninoglycans (µg)	% Proteoglycans a	and Glycosaminoglycans	Cell Number (Million)
0.026	· · · · ·	2.8		30.4			2.3	3.5
0.026		2.9		20.8			21	3.6
0.027				23.0			4 .1	0.0
		2.8		30.7			2.2	3.7
0.017		2.8		30.7			2.2	3.7
0.016		2.8		30.7 39.2			2.2	3.7 3.7
0.014		2.8 1.7 1.5		30.7 39.2 40.5			2.9 3.2	3.7 3.7 3.8
0.019		2.8 1.7 1.5 1.4		30.7 39.2 40.5 39.3			2.9 3.2 3.3	3.7 3.7 3.8 3.6
0.015		2.8 1.7 1.5 1.4 1.8		23.3 30.7 39.2 40.5 39.3 38.8			2.9 3.2 3.3	3.7 3.7 3.8 3.6 3.7
0.015		2.8 1.7 1.5 1.4 1.8 1.5		29.0 30.7 39.2 40.5 39.3 38.8 40.1			2.9 3.2 3.3 3.2	3.7 3.7 3.8 3.6 3.7 3.9
0.015		2.8 1.7 1.5 1.4 1.5 1.5 1.5		29.0 30.7 39.2 40.5 39.3 38.8 40.1 42.0			2.9 3.2 3.3 3.2 3.1 3.2 3.3	3.7 3.7 3.8 3.6 3.7 3.9 3.6
0.015		2.8 1.7 1.5 1.4 1.8 1.5 1.5		29.0 30.7 39.2 40.5 39.3 38.8 40.1 42.0			2.2 2.9 3.2 3.3 3.2 3.1 3.3	3.7 3.7 3.8 3.6 3.7 3.9 3.6
0.015		2.8 1.7 1.5 1.4 1.8 1.5 1.5 1.5		29.0 30.7 39.2 40.5 39.3 38.8 40.1 42.0			2.2 2.9 3.2 3.3 3.2 3.1 3.3	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1
0.015		2.8 1.7 1.5 1.4 1.8 1.5 1.5 1.5		30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0			2.9 3.2 3.3 3.2 3.1 3.3 1.6	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1
0.015 0.199 0.200		2.8 1.7 1.5 1.4 1.5 1.5 1.5 12.9 12.5 12.9		30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 26.0			2.2 2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0
0.015 0.199 0.200 0.199		2.8 1.7 1.5 1.4 1.8 1.5 1.5 12.9 12.5 12.8		30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0			2.2 2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9
0.015 0.199 0.200 0.199		2.8 1.7 1.5 1.4 1.8 1.5 1.5 12.9 12.5 12.8		30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0			2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9
0.015 0.199 0.200 0.199	n (mn) Incoluble Col	2.8 1.7 1.5 1.4 1.8 1.5 1.5 12.9 12.5 12.8 22.0 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.5 2	Total Protocolycom	30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0	singdycana (uc)	% Protocol uciona	2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9
0.015 0.199 0.200 0.199 Insoluble Collagen Fractio	n (mg) Insoluble Col	2.8 1.7 1.5 1.4 1.5 1.5 1.5 12.9 12.5 12.8 agen Fraction (%) 2.8	Total Proteoglycans	23.5 30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0 and Glycosan	ninoglycans (µg)	<u>% Proteoglycans a</u>	2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5 and Glycosaminoglycans	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9 Cell Number (Million)
0.015 0.199 0.200 0.199 Insoluble Collagen Fractio 0.026	<u>n (mg)</u> Insoluble Col	2.8 1.7 1.5 1.4 1.8 1.5 1.5 12.9 12.5 12.8 agen Fraction (%) 2.8	Total Proteoglycans	30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0 and Glycosan 30.3 40.0	<u>ninoglycans (μg)</u>	<u>% Proteoglycans a</u>	2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5 and Glycosaminoglycans 2.2	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9 <u>Cell Number (Million)</u> 3.6 2.7
0.015 0.199 0.200 0.199 Insoluble Collagen Fractio 0.026 0.016 0.100	n (mg) Insoluble Col	2.8 1.7 1.5 1.4 1.8 1.5 1.5 12.9 12.5 12.8 agen Fraction (%) 2.8 1.6 1.2	<u>Total Proteoglycans</u>	30.7 30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0 and Glycosan 30.3 40.0	ninoglycans (µg)	<u>% Proteoglycans a</u>	2.1 2.2 3.2 3.2 3.1 3.2 3.1 3.3 1.6 1.6 1.5 and Glycosaminoglycans 2.2 3.2	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9 Cell Number (Million) 3.6 3.7 4.1 4.0 3.9
0.015 0.199 0.200 0.199 Insoluble Collagen Fractio 0.026 0.016 0.199	n (mg) Insoluble Col	2.8 1.7 1.5 1.4 1.8 1.5 1.5 12.9 12.5 12.8 agen Fraction (%) 2.8 1.6 12.7	<u>Total Proteoglycans</u>	30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0 and Glycosan 30.3 40.0 36.2	<u>ninoglycans (μg)</u>	<u>% Proteoglycans a</u>	2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5 and Glycosaminoglycans 2.2 3.2 1.6	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9 <u>Cell Number (Million)</u> 3.6 3.7 4.0
0.015 0.199 0.200 0.199 Insoluble Collagen Fractio 0.026 0.016 0.199	<u>n (mg)</u> Insoluble Col	2.8 1.7 1.5 1.4 1.5 1.5 1.5 12.9 12.5 12.8 agen Fraction (%) 2.8 1.6 12.7 0.0	<u>Total Proteoglycans</u>	30.7 30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0 and Glycosan 30.3 40.0 36.2	<u>ninoglycans (μg)</u>	<u>% Proteoglycans a</u>	2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5 and Glycosaminoglycans 2.2 3.2 1.6 0.1	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9 <u>Cell Number (Million)</u> 3.6 3.7 4.0 0.1
0.015 0.199 0.200 0.199 Insoluble Collagen Fractio 0.026 0.016 0.199 0.001	<u>n (mg)</u> Insoluble Col	2.8 1.7 1.5 1.4 1.5 1.5 12.9 12.5 12.8 agen Fraction (%) 2.8 1.6 12.7 0.0 0.1	<u>Total Proteoglycans</u>	30.7 39.2 40.5 39.3 38.8 40.1 42.0 35.5 37.0 36.0 and Glycosan 30.3 40.0 36.2 0.5 1.2	<u>tinoglycans (μg)</u>	<u>% Proteoglycans a</u>	2.2 2.9 3.2 3.3 3.2 3.1 3.3 1.6 1.6 1.5 and Glycosaminoglycans 2.2 3.2 1.6 0.1 0.1	3.7 3.7 3.8 3.6 3.7 3.9 3.6 4.1 4.0 3.9 <u>Cell Number (Million)</u> 3.6 3.7 4.0 0.1 0.1

The resulting medium was simplified further by getting rid of the transferrin and O-Phosphorylethanolamine, since there was no solid literature to support the need of these components for the growth of cell-derived matrices. The concentration of L-3,3',5-Triiodothyronine was also increased by ten times to support the necessary increased rate of cell metabolism of the fibroblasts within cell-derived matrices. The results for cell-derived matrices (*CDMs, **CDM, and BTCs) seeded with 2.0 million HFFs (0.5 million less than above) on TransWells[™] and fed with this medium for 3 weeks are shown below. This chemically defined medium increased the thickness and UTS. The decreased cell number resulted in a significant decrease in the tension, thickness, total protein, and UTS of CDMs and collagen gels.

Jan-Eric W. Ahlfors

Sample		Thickness (mm)	<u>Displacement (mm)</u>	Spherical Cap A	rea (mm2) E	stimated Burst Thickness (n	nm) <u>Tension (N/m)</u>
		0.130	2.81	103.3		0.091	26.6
		0.120	2.01	05.2		0.031	20.0
		0.130	2.50	102.2		0.002	28.5
		0.120	2.15	102.5		0.032	20.5
[CG1]		0.080	2.30	95.2		0.066	10.3
ICG21		0.080	2.45	97.4		0.065	17.1
ICG31		0.090	2.05	91.7		0.077	16.8
[CG4]		0.080	2.12	92.7		0.068	11.4
[FG1]		0.210	3.17	110.1		0.150	25.7
[FG2]		0.220	2.69	101.3		0.171	30.8
[FG3]		0.220	2.89	104.8		0.165	30.4
[FG4]		0.220	2.74	102.1		0.169	29.0
[*CDM1]		0.400	3.88	125.8		0.250	121.3
		0.390	3.59	119.0		0.257	124.4
		0.390	2.64	110 5		0.262	107.0
		0.400	3.01	119.5		0.263	127.0
[**CDM1]		0 220	3 27	112 1		0 154	151 1
[**CDM2]		0.220	3.82	12.1		0.145	162.6
[00002]		0.200	0.02	121		0.110	102.0
		<u>Thickness (mm)</u>	Displacement (mm)	Spherical Cap A	rea (mm2) E	stimated Burst Thickness (n	nm) Tension (N/m)
10% FBS FPCL	CG	0.083	2.23	94.2		0.069	13.9
10% FBS FPFL	FG	0.218	2.87	104.6		0.164	29.0
10% FBS CDM	CDM	0.125	2.62	100.3		0.097	27.9
Ahlfors CDM	*CDM	0.395	3.69	121.4		0.257	124.2
Ahlfors+ CDM	**CDM	0.225	3.55	118.3		0.150	156.9
<u>Standard</u>	CG	0.005	0.18	2.6		0.006	3.6
<u>Deviations</u>	FG	0.005	0.22	4.0		0.010	2.3
	CDM	0.006	0.28	4.5		0.009	1.1
	*CDM	0.006	0.16	3.8		0.007	2.9
	**CDM	0.007	0.39	8.7		0.006	8.1
Ultimate Tensile Str	ength (kPa) Estimated True U	TS (kPa) Failure Strain	Wet Weight (mg)	Dry Weight (m	ng) Wet Weight / Dry Weight	Total Protein (mg)
242.0		074.0	0.00	23.8	1.8	13.2	1.2
212.8		2/4.0	0.20	24.1	1.9	12.7	1.3
220.0		295.2	0.14	23.9	1.9	12.0	1.0
220.0		294.2	0.19	24.4	1.0	13.0	1.2
124.8		149.6	0 14	23.1	14	16.5	11
207.3		248.4	0.15	24.5	1.1	16.3	11
203.6		244.0	0.11	23.6	1.5	15.7	1.1
138.2		165.6	0.12		1.0		1.1
				23.9	1.4	17.1	1.1
118.2				23.9	1.4	17.1	1.1
141.6		157.1	0.25	23.9 44.3	1.4 2.2	17.1 20.1	1.1 1.1 1.5
139.8		157.1 188.2	0.25 0.18	23.9 44.3 46.1	1.4 2.2 2.3	17.1 20.1 20.0	1.1 1.1 1.5 1.6
		157.1 188.2 185.8	0.25 0.18 0.21	23.9 44.3 46.1 45.3	1.4 2.2 2.3 2.2	17.1 20.1 20.0 20.6	1.1 1.1 1.5 1.6 1.5
133.3		157.1 188.2 185.8 177.2	0.25 0.18 0.21 0.19	23.9 44.3 46.1 45.3 44.9	1.4 2.2 2.3 2.2 2.3	17.1 20.1 20.0 20.6 19.5	1.1 1.5 1.6 1.5 1.6
133.3		157.1 188.2 185.8 177.2	0.25 0.18 0.21 0.19	23.9 44.3 46.1 45.3 44.9	1.4 2.2 2.3 2.2 2.3	17.1 20.1 20.0 20.6 19.5	1.1 1.5 1.6 1.5 1.6
133.3 307.1		157.1 188.2 185.8 177.2 472.6	0.25 0.18 0.21 0.19 0.37	23.9 44.3 46.1 45.3 44.9 122.3	1.4 2.2 2.3 2.2 2.3 6.3	17.1 20.1 20.0 20.6 19.5 19.4	1.1 1.1 1.5 1.6 1.5 1.6 4.4
133.3 307.1 314.9		157.1 188.2 185.8 177.2 472.6 484.7	0.25 0.18 0.21 0.19 0.37 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.0	1.4 2.2 2.3 2.2 2.3 6.3 6.2	17.1 20.1 20.0 20.6 19.5 19.4 19.8	1.1 1.5 1.6 1.5 1.6 4.4 4.3
133.3 307.1 314.9		157.1 188.2 185.8 177.2 472.6 484.7	0.25 0.18 0.21 0.19 0.37 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4	17.1 20.1 20.6 19.5 19.4 19.8 19.5	1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4
133.3 307.1 314.9 321.5		157.1 188.2 185.8 177.2 472.6 484.7 494.8	0.25 0.18 0.21 0.19 0.37 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4	1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5
133.3 307.1 314.9 321.5 671.6		157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8	1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6
133.3 307.1 314.9 321.5 671.6 722.7		157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9	1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7
133.3 307.1 314.9 321.5 671.6 722.7		157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9	1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7
133.3 307.1 314.9 321.5 671.6 722.7		157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.3 4.4 4.5 2.6 2.7
133.3 307.1 314.9 321.5 671.6 722.7 <u>Ultimate Tensile Str</u>	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.36 TS (kPa) Failure Strain	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u>	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 Wet Weight / Dry Weight	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 <u>Total Protein (mg)</u>
133.3 307.1 314.9 321.5 671.6 722.7 <u>Ultimate Tensile Stru</u> 168.5	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U 201.9	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.36 TS (kPa) Failure Strain 0.13	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 19.9 Met Weight / Dry Weight 16.4 16.4	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 <u>Total Protein (mg)</u> 1.08
133.3 307.1 314.9 321.5 671.6 722.7 Ultimate Tensile Stro 168.5 133.2	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 <u>Estimated True U</u> 201.9 177.1	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.36 TS (kPa) Failure Strain 0.13 0.21 0.21	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8 45.2	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 Wet Weight / Dry Weight 16.4 20.1	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 <u>Total Protein (mg)</u> 1.08 1.58 1.08
133.3 307.1 314.9 321.5 671.6 722.7 <u>Ultimate Tensile Str</u> 168.5 133.2 223.2 223.2	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U 201.9 177.1 288.0	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.36 TS (kPa) Failure Strain 0.13 0.21 0.18 0.20	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8 45.2 24.1	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25 1.85 2.25 1.85	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 19.9 19.9 19.9 10.4 20.8 19.9 10.4 20.8 19.9	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 Total Protein (mg) 1.08 1.58 1.25 1.0
133.3 307.1 314.9 321.5 671.6 722.7 Ultimate Tensile Str 168.5 133.2 223.2 314.5 077.1	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U 201.9 177.1 288.0 484.1	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.27 0.36 TS (kPa) Failure Strain 0.13 0.21 0.18 0.33 0.21	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8 45.2 24.1 123.0 76.2	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25 1.85 6.30 0.275	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 19.9 19.9 19.9 19.9 10.4 20.1 13.0 19.5 19.2 20.1 13.0 19.5 19.4 20.1 19.5 19.4 20.8 19.9 20.1 20.1 20.2	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 Total Protein (mg) 1.08 1.58 1.25 4.40 2.65
133.3 307.1 314.9 321.5 671.6 722.7 <u>Ultimate Tensile Str</u> 168.5 133.2 223.2 314.5 697.1	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U 201.9 177.1 288.0 484.1 1048.0	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.27 0.36 TS (kPa) Failure Strain 0.13 0.21 0.18 0.33 0.31	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8 45.2 24.1 123.0 76.2	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25 1.85 6.30 3.75	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 19.9 19.9 19.9 19.9 19.9 19.4 20.8 19.9 19.4 20.8 19.5 19.4 20.8 19.5 19.4 19.9 19.9 19.9 19.9 19.9 19.9 10.9 1	1.1 1.1 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 <u>Total Protein (mg)</u> 1.08 1.25 4.40 2.65
133.3 307.1 314.9 321.5 671.6 722.7 <u>Ultimate Tensile Str</u> 168.5 133.2 223.2 314.5 697.1 43.1	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U 201.9 177.1 288.0 484.1 1048.0 51.6	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8 45.2 24.1 123.0 76.2 0.6	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25 1.85 6.30 3.75 0.06	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 19.4 20.8 19.9 19.4 20.8 19.9 19.4 20.8 19.9 19.4 20.0 19.5 19.4 19.9 19.4 20.8 19.9 10.4 10.5 19.4 19.9 10.4 19.9 10.4 10.9 10.5 10.4 10.9 10.5 10.4 10.9 10.5 10.4 10.9 10.5 10.4 10.9 10.4 10.9 10.4 20.8 10.9 10.4 20.1 13.0 19.5 20.3 0.6	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 Total Protein (mg) 1.08 1.58 1.25 4.40 2.65 0.03
133.3 307.1 314.9 321.5 671.6 722.7 Ultimate Tensile Stru 168.5 133.2 223.2 314.5 697.1 43.1 10.6	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U 201.9 177.1 288.0 484.1 1048.0 51.6 14.2	0.25 0.18 0.21 0.19 0.37 0.32 0.33 0.31 0.33 0.31 0.13 0.33 0.31 0.33 0.31 0.33 0.31 0.33 0.31 0.13 0.33 0.31 0.33 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.31 0.32 0.33 0.31 0.02 0.03 0.31 0.02 0.03 0.31	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8 45.2 24.1 123.0 76.2 0.6 0.8	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25 1.85 6.30 3.75 0.06 0.06	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 19.4 20.8 19.9 19.4 20.8 19.9 19.4 20.8 19.9 19.4 20.8 19.5 19.4 20.6 19.5 19.4 19.9 19.9 10.1 10.5 19.9 10.1 10.2 10.2 10.2 10.2 10.2 10.2 10.3 10.5 10.5 10.4 10.5 20.3 0.6 0.4	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 <u>Total Protein (mg)</u> 1.08 1.58 1.25 4.40 2.65 0.03 0.04
133.3 307.1 314.9 321.5 671.6 722.7 Ultimate Tensile Stm 168.5 133.2 223.2 314.5 697.1 43.1 10.6 9.0	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 201.9 177.1 288.0 484.1 1048.0 51.6 14.2 11.6	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 Wet Weight (mg) 23.8 45.2 24.1 123.0 76.2 0.6 0.8 0.3	1.4 2.2 2.3 2.2 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25 1.85 6.30 3.75 0.06 0.06 0.06	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 Met Weight / Dry Weight 16.4 20.1 13.0 19.5 20.3 0.6 0.4 0.5	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 <u>Total Protein (mg)</u> 1.08 1.58 1.25 4.40 2.65 0.03 0.04 0.06
133.3 307.1 314.9 321.5 671.6 722.7 Ultimate Tensile Stro 168.5 133.2 223.2 314.5 697.1 43.1 10.6 9.7.2	ength (kPa	157.1 188.2 185.8 177.2 472.6 484.7 494.8 1009.6 1086.5 Estimated True U 201.9 177.1 288.0 484.1 1048.0 51.6 14.2 11.6 11.1	0.25 0.18 0.21 0.19 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	23.9 44.3 46.1 45.3 44.9 122.3 122.6 122.8 124.4 76.8 75.5 <u>Wet Weight (mg)</u> 23.8 45.2 24.1 123.0 76.2 0.6 0.8 0.3 0.9	1.4 2.2 2.3 2.3 6.3 6.2 6.3 6.4 3.7 3.8 Dry Weight (m 1.45 2.25 1.85 6.30 3.75 0.06 0.06 0.08	17.1 20.1 20.0 20.6 19.5 19.4 19.8 19.5 19.4 20.8 19.9 19.9 19.9 10.4 20.8 19.9 10.4 20.1 13.0 19.5 20.3 0.6 0.4 0.5 0.2	1.1 1.1 1.5 1.6 1.5 1.6 4.4 4.3 4.4 4.5 2.6 2.7 Total Protein (mg) 1.08 1.58 1.25 4.40 2.65 0.03 0.04 0.06 0.08

Total Collagen (mg)	Total 4-Hydroxyproline (mg)	% Collagen	Collagen Density (mg/cm3)	UTS / Collagen Density (kPa/mg/cm3)	Insoluble Collagen Fraction (mg)
0.83	0.088	68.8	14.0		0.018
0.87	0.090	67.2	16.1	13.2	0.021
0.88	0.091	67.4	14.9	15.4	0.019
0.84	0.087	69.6	15.4	14.8	0.021
1.01	0.108	91.8	27.9	4.5	0.016
0.98	0.104	92.9	26.9	7.7	0.016
1.00	0.106	90.5	24.4	8.3	0.014
0.97	0 108	91.9	26.7	52	0.014
0.07	0.100	01.0	20.1	0.2	0.011
0.48	0.054	31.1	5.0	23.4	0.007
0.52	0.057	32.5	5.3	26.9	0.007
0.02	0.054	31.6	4 9	28.6	0.006
0.43	0.054	33.7	1 .5	20.0	0.006
0.54	0.059	33.7	5.5	24.4	0.000
1 38	0 1/3	31 /	7.6	40.3	0 180
1.30	0.145	21.9	7.0	40.5	0.166
1.07	0.145	31.0	7.7	40.7	0.100
1.39	0.144	31.0	7.9	20.0	0.177
1.46	0.150	32.4	8.1	39.8	0.193
4 70	0.100	00.0	47.4	00.0	0.000
1.73	0.183	66.6	17.4	38.6	0.223
1.82	0.188	67.4	17.5	41.3	0.242
Total Collagen (mg)	Total 4-Hydroxyproline (mg)	% Collagen	Collagen Density (mg/cm3)	UTS / Collagen Density (kPa/mg/cm3)	Insoluble Collagen Fraction (mg)
0.99	0.107	91.8	26.5	6.4	0.015
0.51	0.056	32.2	5.2	25.9	0.007
0.85	0.089	68.2	15.1	14.5	0.020
1.40	0.146	31.8	7.8	40.3	0.179
1.78	0.186	67.0	17.4	40.0	0.233
0.02	0.002	1.0	1.5	1.9	0.001
0.03	0.002	1.2	0.2	2.4	0.001
0.03	0.002	1.1	0.9	1.1	0.002
0.04	0.003	0.5	0.2	0.4	0.011
0.06	0.004	0.6	0.1	1.9	0.013
•••••		• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
••••••••••		· · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Insoluble Collager	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg) <u>% Proteoglycans and Glycosami</u>	noglycans <u>Cell Number (Million)</u>
Insoluble Collager 2.2	n Fraction (%) Total Prote	eoglycans an	nd Glycosaminoglycans (μg 31.5) <u>% Proteoglycans and Glycosami</u> 2.6	noglycans <u>Cell Number (Million)</u> 2.7
Insoluble Collager 2.2 2.4	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8) <u>% Proteoglycans and Glycosami</u> 2.6 2.4	noglycans Cell Number (Million) 2.7 2.8
Insoluble Collager 2.2 2.4 2.2	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.4	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6
Insoluble Collager 2.2 2.4 2.2 2.5	<u>n Fraction (%)</u> Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.4 2.7	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9
Insoluble Collager 2.2 2.4 2.2 2.5	<u>1 Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9
Insoluble Collager 2.2 2.4 2.2 2.5 1.6	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7 3.5	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.8
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7 3.5 3.6	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.8 2.9
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.6 1.4	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.6 3.5	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.8 2.9 2.7
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.4 1.5	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 38.0 39.4) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.6 3.5 3.8	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.6 3.5 3.8 2.9	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.7 2.8 3.9
Insoluble Collager 2.2 2.4 2.5 1.6 1.6 1.6 1.4 1.5 1.5 1.5 1.3	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.6 1.4 1.5 1.5 1.3 1.2	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.0 4.1
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.6 1.4 1.5 1.3 1.2 1.1	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.8	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7) <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.8	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.0 4.1 3.8
Insoluble Collager 2.2 2.4 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 1.1 13.0	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7 65.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.8 1.5	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1
Insoluble Collager 2.2 2.4 2.5 1.6 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 1.1 13.0 12.2	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 1.1 1.2 1.1	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5	noglycans <u>Cell Number (Million)</u> 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3 63.8) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.5 1.4	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3 63.8) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.5 1.4	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 6.1
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9	<u>n Fraction (%)</u> <u>Total Prote</u>	oglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3 63.8 38.6) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 6.2 6.0 6.1 3.6
Insoluble Collager 2.2 2.4 2.5 1.6 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3 63.8 38.6 38.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 6.2 6.0 6.1 3.5
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 1.1 13.0 12.2 12.7 13.2 12.9 13.3	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3 63.8 38.6 38.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.5 1.4	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.3 1.2 1.1 13.0 12.2 13.2 12.7 13.2 12.9 13.3	n Fraction (%) Total Prote	eoglycans ar	nd Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3 63.8 38.6 38.6 38.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.4 1.5 1.4	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 3.5
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.7 63.8 38.6 38.6 38.1	<u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.7 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.5 noglycans Cell Number (Million)
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3	<u>n Fraction (%)</u> <u>Total Prote</u>	oglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 38.0 39.4 44.7 46.5 44.5 45.7 65.1 63.9 64.3 63.8 38.6 38.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.5 noglycans Cell Number (Million) 2.8 3.5
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 12.9 13.3 12.9 13.3	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 65.1 63.9 64.3 63.8 38.6 38.1	 <u>% Proteoglycans and Glycosami</u> 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.8 1.5 1.5 1.5 1.5 1.4 1.5 1.4 	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 noglycans Cell Number (Million) 2.8 4.0
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.3 1.2 1.1 13.0 12.2 12.1 13.0 12.2 13.1 13.0 12.2 13.1 13.0 12.2 13.1 13.0 12.2 13.1 13.0 12.2 13.1 13.0 12.9 13.3 Insoluble Collager 1.5 1.3 2.3	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 65.1 63.9 64.3 63.8 38.6 38.1 ad Glycosaminoglycans (µg 38.4 45.4 31.3) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.5 noglycans Cell Number (Million) 2.8 4.0 2.8 4.0
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 12.9 13.3 12.9 13.3	<u>n Fraction (%)</u> Total Prote	eoglycans ar	ad Glycosaminoglycans (µg) 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.7 65.1 63.9 64.3 38.6 38.6 38.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 4.0 2.8 6.1 3.6
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 12.9 13.3 12.9 13.3 12.8 13.1	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.7 65.1 63.9 64.3 63.8 38.6 38.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 3.5 noglycans Cell Number (Million) 2.8 4.0 2.8 4.0 3.6 3.5
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 12.9 13.3 12.9 13.3 12.9 13.3 12.9 13.3 12.9 13.3 12.9 13.3	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 65.1 63.9 64.3 63.8 38.6 38.1 bd Glycosaminoglycans (µg 38.4 45.4 31.3 64.3 38.4 45.4 31.3 64.3 38.4) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.4 1.5 1.4 % Proteoglycans and Glycosami 3.6 2.9 2.5 1.5 1.4	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 3.5 noglycans Cell Number (Million) 2.8 4.0 2.8 4.0 2.8 4.0 2.8 6.1 3.6 3.5
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 Insoluble Collager 1.5 1.3 1.2 12.9 13.3 13.3 12.9 13.3 12.9 13.3 13.3 12.9 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13	n Fraction (%) Total Prote	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.5 45.7 65.1 63.8 38.6 38.1 hd Glycosaminoglycans (µg 38.4 45.4 31.3 64.3 38.4 0.7) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.1 3.6 3.5 3.5 noglycans Cell Number (Million) 2.8 4.0 4.0 2.8 4.0 2.8 6.1 3.6 3.6 3.6 3.6 0.1
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 Insoluble Collager 1.5 1.3 2.3 12.8 13.1 0.1	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg) 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.7 65.1 63.9 64.3 38.4 0.7 0.9) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 2.8 4.0 2.8 4.0 3.6 3.5 2.8 4.0 3.6 3.5 3.6 0.1 3.6 0.1 0.1
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.5 1.3 1.2 1.1 1.1 13.0 12.2 12.7 13.2 12.9 13.3 Insoluble Collager 1.5 1.3 2.3 12.8 13.1 0.1 0.2 0.2 0.2	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.5 65.1 63.9 64.3 63.8 38.6 38.1) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 0.1 0.0 0.2	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 noglycans Cell Number (Million) 2.8 4.0 2.8 4.0 3.6 3.5 noglycans Cell Number (Million) 2.8 4.0 2.8 6.1 3.6 3.5
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.3 1.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 Insoluble Collager 1.5 1.3 2.3 12.8 13.1 0.1 0.2 0.5	<u>n Fraction (%)</u> <u>Total Prote</u>	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.5 65.1 63.9 64.3 63.8 38.4 45.4 31.3 64.3 38.4 5.4 31.3 64.3 38.4 0.7 0.9 0.5 0.6) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.5 1.4 1.5 1.4 % Proteoglycans and Glycosami 3.6 2.9 2.5 1.5 1.4 0.1 0.0 0.2 0.0	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.8 2.9 2.7 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 3.5 noglycans Cell Number (Million) 2.8 4.0 2.8 6.1 3.6 3.5 6.1 3.6 3.5 6.1 3.6 3.5 6.1 3.6 0.1 2.8 6.1 3.6 0.1 0.1 0.1 0.1
Insoluble Collager 2.2 2.4 2.2 2.5 1.6 1.6 1.4 1.5 1.3 1.2 1.1 13.0 12.2 1.1 13.0 12.2 12.7 13.2 12.9 13.3 Insoluble Collager 1.5 1.3 2.3 12.8 13.1 0.1 0.2 0.5 0.3	n Fraction (%) Total Prote	eoglycans ar	ad Glycosaminoglycans (µg 31.5 30.8 31.1 31.9 38.3 38.0 39.4 44.7 46.5 44.7 46.5 44.5 45.7 65.1 63.8 38.6 38.1 hd Glycosaminoglycans (µg 38.4 45.4 31.3 64.3 38.4 0.7 0.9 0.5 0.6 0.4) % Proteoglycans and Glycosami 2.6 2.4 2.4 2.7 3.5 3.6 3.5 3.8 2.9 2.9 2.9 2.9 2.9 2.8 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	noglycans Cell Number (Million) 2.7 2.8 2.6 2.9 2.8 2.9 2.8 2.9 2.7 2.8 3.9 4.0 4.1 3.8 6.1 6.2 6.0 6.1 3.6 3.5 3.5 noglycans Cell Number (Million) 2.8 4.0 2.8 6.1 3.6 3.6 3.6 3.6 0.1 3.6 0.1 0.1 0.1 0.1 0.1 0.1

Appendix 5: One-Way Anova and Tukey HSD Post Hoc Statistical Analysis of Parameters between all Groups

		Sum of	df	Mean Square	F	Sig
Thickness	Between Grouns	231	ui 1		1870 800	000
1 monicos	Within Groups	.231	13	.038	10/9.009	.000
	Total	232	17	.000		
Total Protein	Between Groups	29.838	4	7 459	2154 951	000
	Within Groups	045	13	003	210 1.901	.000
	Total	29 883	17	.002		
Cell Number	Between Groups	29.718	4	7.429	666.088	.000
	Within Groups	.145	13	.011	000.000	
	Total	29.863	17			
Tension	Between Groups	46558.721	4	11639.680	921.794	.000
	Within Groups	138.899	11	12.627		
	Total	46697.620	15			
UTS	Between Groups	492785.018	4	123196.254	181.257	.000
	Within Groups	7476.440	11	679.676		
	Total	500261.458	15			
Failure Strain	Between Groups	.098	4	.024	23.008	.000
	Within Groups	.012	11	.001		
	Total	.109	15			
Total Collagen	Between Groups	2.879	4	.720	667.044	.000
	Within Groups	.014	13	.001		
	Total	2.893	17			
Percent Collagen	Between Groups	10535.886	4	2633.972	2919.150	.000
	Within Groups	11.730	13	.902		
	Total	10547.616	17			
Non-Acid and Pepsin Extractable Fraction	Between Groups	502.709	4	125.677	2163.981	.000
	Within Groups	.755	13	.058		
	Total	503.464	17			
Total Proteoglycans and Glycosaminoglycans	Between Groups	2482.114	4	620.528	1396.256	.000
	Within Groups	5.777	13	.444		
	Total	2487.891	17			
Percent Proteoglycans and Glycosaminoglycans	Between Groups	11.810	4	2.953	260.226	.000
	Within Groups	.148	13	.011		
	Total	11.958	17			
UTS per Collagen Density	Between Groups	2816.691	4	704.173	229.485	.000
	Within Groups	33.753	11	3.068		
	Total	2850.444	15			

O<u>neWay ANOVA</u>

Dependent Variable SampleType SampleType Difference (i- sampleType) Std. Error Sig. Sig. Entreval Interval Dependent Variable SampleType SampleType SampleType Sig. Unover Bound Upper Bound Thickness CDM Collagen Gel .04250(*) .00392 .000 .0301 .0549 *CDM 10000(*) .00480 .000 1511 .0849 *Collagen Gel CDM .04250(*) .00392 .000 .0549 0301 *CDM .1350(*) .00392 .000 1511 0849 1226 *CDM .1350(*) .00392 .000 1576 1274 *CDM .1250(*) .00392 .000 1611 1499 *CDM .1750(*) .00392 .000 1576 1274 *CDM CDM 1750(*) .00392 .000 1599 1651 *CDM 1750(*) .00392 .000 1511 1899	-			Mean			0.50/ 0	C 1
Image: CDM Collagen Gel Fibrin Gel 0.4250(*) .0092 0.0392 0.00 0.3011 0.549 **CDM Collagen Gel **CDM 27000(*) 0.0392 0.00 2824 2576 **CDM 10000(*) 0.0392 0.00 0349 03619 **CDM 10000(*) 0.0392 0.00 1474 1226 **CDM 13500(*) 0.0392 0.00 1376 1274 Fibrin Gel CDM 04250(*) 0.0380 0.00 1376 1274 Fibrin Gel CDM 04250(*) 0.0380 0.00 1376 1274 Fibrin Gel CDM 0750 0.0392 0.00 1859 1651 **CDM CDM 2.7000(*) 0.0392 0.00 .1399 1651 **CDM CDM 2.7000(*) 0.0392 0.00 .1549 1.851 **CDM 1.750(*) 0.0392 0.00 .1549 1.851 **CDM 1.	Dependent Variable	(1) SampleType	(J) SampleType	Difference (I- J)	Std. Error	Sig.	95% Cor Inter	ifidence rval
Thickness CDM Collagen Gel Fibrin Gel .04250(*) .00392 .00392 .000 .0301 .0549 **CDM 27000(*) .00392 .000 .2324 2576 **CDM 0000(*) .00392 .000 .01311 .0849 Collagen Gel CDM .04250(*) .00392 .000 .1151 .0849 Collagen Gel CDM .04250(*) .00392 .000 .1214 .1226 *CDM .14250(*) .00392 .000 .1350 .1774 .1226 *CDM .14250(*) .00392 .000 .1226 .1474 *CDM .1750(*) .00392 .000 .1226 .1474 *CDM .1750(*) .00392 .000 .1899 .1651 *CDM .1750(*) .00392 .000 .1651 .1899 *CDM CDM .2000(*) .00392 .000 .1649 .151 Collagen Gel .1750(*) .00392 .000 <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>·- U</td> <td>Lower Bound</td> <td>Upper Bound</td>				· · · · · · · · · · · · · · · · · · ·		·- U	Lower Bound	Upper Bound
Fibrin Gel 09250(+) 00392 0.00 1449 0801 **CDM 27000(+) 00392 0.00 2824 2576 **CDM 04250(+) 00392 0.00 1151 0849 Collagen Gel CDM 04250(+) 00392 0.00 1374 1226 *CDM 31250(+) 00392 0.00 1374 1226 *CDM 14250(+) 00392 0.00 1376 1274 Fibrin Gel CDM .09250(+) 00392 0.00 .1899 1651 *CDM 07050 00480 .545 0226 .0076 *CDM CDM .07070(+) 00392 .000 .1511 .1549 *CDM CDM .0700(+) 0.0392 .000 .1541 .1581 CDM CDM .0700(+) 0.0480 .000 .1549 .1851 *CDM .17000(+) .00480 .000 .1811 .1569	Thickness	CDM	Collagen Gel	.04250(*)	.00392	.000	.0301	.0549
CDM -27000() 00392 0.00 -2824 -2576 Collagen Gel CDM -10000(*) 00480 000 -1511 -0849 Collagen Gel CDM -04250(*) 00392 000 -0549 -0301 *CDM -31250(*) 00392 000 -3249 -3001 *CDM -31250(*) 00392 000 -3249 -3001 *CDM -14250(*) 00392 000 .0801 11049 Collagen Gel 0.9253(*) 00392 000 .1265 .1474 *CDM -0750 00480 .000 .1266 .1474 *CDM CDM -2700(*) 00392 000 .1651 .1899 *CDM CDM .1700(*) 00480 .000 .1549 .1851 *CDM CDM .1700(*) 00480 .000 .1549 .1851 *CDM CDM .1700(*) 00480 .000 .1851 .1549			Fibrin Gel	09250(*)	.00392	.000	1049	0801
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			*CDM	27000(*)	.00392	.000	2824	2576
Collagen Gel CDM 04250(*) .00392 .000 0549 0301 Fibrin Gel 13500(*) .00392 .000 31230(*) .0392 .000 3124 1226 *CDM 14250(*) .00392 .000 821 1049 *CDM 1250(*) .00392 .000 881 1049 Collagen Gel 13500(*) .00392 .000 189 1651 *CDM 17750(*) .00392 .000 1789 1651 *CDM 00750 .00480 .000 3249 576 *CDM 0070(*) .00392 .000 576 524 Collagen Gel 1750(*) 0392 .000 5149 576 *CDM 000(*) 00480 .000 549 576 *CDM 1000(*) 00480 00 549 576 *CDM 10000(*) 004160 1274			**CDM	10000(*)	.00480	.000	1151	0849
Fibrin Gel 13500(*) .00392 .000 1474 1226 *CDM 31250(*) .00392 .000 1576 1274 Fibrin Gel CDM .09250(*) .00392 .000 .1474 1274 Collagen Gel .13500(*) .00392 .000 .1576 .1274 *CDM 17750(*) .00392 .000 .1899 1651 *CDM 17750(*) .00392 .000 .2576 .2824 Collagen Gel .31250(*) .00392 .000 .2576 .2824 Collagen Gel .17750(*) .00392 .000 .1519 .1889 **CDM .17000(*) .00480 .000 .1549 .1851 **CDM .10000(*) .00480 .000 .1549 .1559 Total Protein CDM Collagen Gel .14250(*) .00480 .000 .4181 .1549 **CDM .10000(*) .00480 .000 .42810 .1549 .2810 Collagen Gel .14250(*) .00480 .000 <t< td=""><td></td><td>Collagen Gel</td><td>CDM</td><td>04250(*)</td><td>.00392</td><td>.000</td><td>0549</td><td>0301</td></t<>		Collagen Gel	CDM	04250(*)	.00392	.000	0549	0301
CDM 31250() .00392 .000 3249 3001 **CDM 14250(*) .00480 .000 .1576 1274 Fibrin Gel CDM .09250(*) .00392 .000 .1226 .1474 *CDM 17750(*) .00392 .000 .1226 .1474 *CDM 00750 .00480 .545 0226 .0076 *CDM CDM .27000(*) .00392 .000 .3249 .3250(*) *CDM CDM .70700(*) .00392 .000 .3011 .3249 **CDM CDM .10700(*) .00480 .000 .1549 .1851 **CDM CDM .10000(*) .00480 .000 .1274 .1576 Fibrin Gel .17000(*) .00480 .000 .1249 .1549 **CDM .10000(*) .04160 .002 .1294 .1550 *CDM 15000(*) .04160 .000 .4310 .1690			Fibrin Gel	13500(*)	.00392	.000	1474	1226
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			*CDM	31250(*)	.00392	.000	3249	3001
Fibrin Gel CDM 09250(*) 0.0392 0.00 0.801 1.1649 Collagen Gel .13500(*) 0.0392 0.00 .1226 .1474 *CDM -17750(*) 0.0392 0.00 .1289 .1651 **CDM -00750 0.0480 .545 -0226 0076 *CDM CDM .27000(*) 0.0392 0.00 .2576 .2824 Collagen Gel .31250(*) 0.0392 0.00 .1651 .1899 **CDM .1700(*) 0.0480 0.00 .1549 .1576 Collagen Gel .14250(*) 0.0480 0.00 .1274 .1576 Collagen Gel .14000(*) 0.0480 .000 .1274 .1576 Collagen Gel .10000(*) .04480 .000 .1274 .1576 Total Protein CDM Collagen Gel .1500(*) .04160 .000 .32810 .3190 *CDM -31500(*) .04160 .000 .3410		5 7 - 0 1	**CDM	14250(*)	.00480	.000	1576	1274
Collagen Gel .13500(*) .00392 .000 .1226 .1474 *CDM 17750(*) .00392 .000 .1899 1651 **CDM CDM 27000(*) .00392 .000 .2576 .2824 *CDM COllagen Gel .31250(*) .00392 .000 .3011 .3249 **CDM Collagen Gel .17750(*) .00392 .000 .1651 .1899 **CDM CDM .10000(*) .00480 .000 .1274 .1576 Collagen Gel .14250(*) .00480 .000 .1274 .1576 Collagen Gel .14000(*) .00480 .000 .1274 .1576 Collagen Gel .15000(*) .04160 .000 .1851 .1549 Total Protein CDM Collagen Gel .15000(*) .04160 .000 .32810 .3190 *CDM -315000(*) .04160 .000 .34310 .31690 .31690 *CDM -15000(*)		Fibrin Gel	CDM	.09250(*)	.00392	.000	.0801	.1049
**CDM 17750(*) .00392 .000 1899 1651 **CDM CDM .2000(*) .00392 .000 .545 0226 .0076 *CDM CDM .27000(*) .00392 .000 .3001 .3249 Fibrin Gel .17750(*) .00392 .000 .1651 .1899 **CDM .17000(*) .00480 .000 .1549 .1851 **CDM CDM .10000(*) .00480 .000 .1274 .1576 Collagen Gel .14250(*) .00480 .000 .1851 .1549 **CDM Collagen Gel .15000(*) .04160 .000 .1851 .1549 Total Protein CDM Collagen Gel .15000(*) .04160 .000 .32810 .30190 **CDM -1.40000(*) .05095 .000 -1.5604 -1.2396 Collagen Gel CDM -1.5000(*) .04160 .000 .34310 .31690 **CDM -1			Collagen Gel	.13500(*)	.00392	.000	.1226	.1474
**CDM 00750 .00480 .545 0226 .0076 *CDM CDM .27000(*) .00392 .000 .2576 .2824 Collagen Gel .31250(*) .00392 .000 .3001 .3249 Fibrin Gel .17750(*) .00392 .000 .1651 .1899 **CDM .17000(*) .00480 .000 .1549 .1511 **CDM .10000(*) .00480 .000 .1274 .1576 Collagen Gel .14250(*) .00480 .000 .1851 .1549 Total Protein CDM Collagen Gel .15000(*) .04160 .000 .4310 .1690 *CDM -3.15000(*) .04160 .000 .4310 .1690 *CDM -1.5000(*) .04160 .000 .34310 .31690 *CDM -1.5000(*) .04160 .000 .5810 .31690 *CDM -1.5000(*) .04160 .000 .34310 .31690			*CDM	17750(*)	.00392	.000	1899	1651
CDM CDM 27000() .00392 .000 .2576 .2824 Collagen Gel .31250(*) .00392 .000 .3001 .3249 **CDM .17750(*) .00392 .000 .1651 .1899 **CDM CDM .17000(*) .00480 .000 .1549 .1851 **CDM COllagen Gel .14250(*) .00480 .000 .1274 .1576 Fibrin Gel .00750 .00480 .000 .1851 .1549 Total Protein CDM Collagen Gel .15000(*) .04160 .002 .0190 .2810 *CDM -3.15000(*) .04160 .000 -3.2810 -3.0190 *CDM -3.15000(*) .04160 .000 -3.810 -3.190 *CDM -1.40000(*) .04160 .000 -3.810 -3.190 *CDM -3.0000(*) .04160 .000 -3.810 -3.190 *CDM -1.5000(*) .04160 .000 -3.81			**CDM	00750	.00480	.545	0226	.0076
Collagen Gei .31250(*) .00392 .000 .3001 .3249 Fibrin Gel .17750(*) .00392 .000 .1651 .1899 **CDM CDM .17000(*) .00480 .000 .0849 .1151 Collagen Gei .14250(*) .00480 .000 .1274 .1576 Fibrin Gei .00750 .00480 .000 .1274 .1576 Fibrin Gei .00750 .00480 .000 .1851 1549 Total Protein CDM Collagen Gei .15000(*) .04160 .002 .0190 .2810 *CDM -315000(*) .04160 .000 4310 1690 *CDM -315000(*) .04160 .000 5810 0190 Fibrin Gei .24000(*) .04160 .000 3120 .31296 Collagen Gei CDM .15000(*) .04160 .000 .5810 .31690 *CDM -1.5000(*) .04160 .000 .3190		*CDM	CDM	.27000(*)	.00392	.000	.2576	.2824
Fibrin Gei .17750(*) .00392 .000 .1651 .1899 **CDM .17000(*) .00480 .000 .1549 .1851 **CDM CDM .10000(*) .00480 .000 .0849 .1151 Collagen Gel .14250(*) .00480 .000 .1274 .1576 Fibrin Gel .00750 .00480 .000 .1851 1549 Total Protein CDM Collagen Gel .15000(*) .04160 .000 32810 30190 *CDM -3.15000(*) .04160 .000 32810 30190 .2810 *CDM -1.40000(*) .05095 .000 15604 -1.2396 Collagen Gel CDM 15000(*) .04160 .000 3190 **CDM -1.5000(*) .04160 .000 3410 1599 Fibrin Gel CDM .33000(*) .04160 .000 3410 1590 Fibrin Gel CDM .15500(*) .05095 .000 -1.7104 -1.3896 *CDM Collagen Gel			Collagen Gei	.31250(*)	.00392	.000	.3001	.3249
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Fibrin Gei	.17750(*)	.00392	.000	.1651	.1899
CDM CDM .10000(*) .00480 .000 0849 1151 Collagen Gel 14250(*) .00480 .000 1274 1576 Fibrin Gel 00750 .00480 .000 1274 1576 *CDM 17000(*) .00480 .000 1511 1549 Total Protein CDM Collagen Gel 15000(*) .04160 .022 1900 *CDM -3.15000(*) .04160 .000 32810 30190 *CDM -1.14000(*) .05995 .000 -1.5604 -1.2396 Collagen Gel CDM 15000(*) .04160 .000 34310 31690 *CDM 15000(*) .04160 .000 5810 3190 *CDM 15000(*) .04160 .000 34310 -3.1690 *CDM 15500(*) .04160 .000 .1690 .4310 Collagen Gel CDM .30000(*) .04160 .000 .		******	**CDM	.17000(*)	.00480	.000	.1549	.1851
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		**CDM	CDM	.10000(*)	.00480	.000	.0849	.1151
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Collagen Gel	.14250(*)	.00480	.000	.1274	.1576
Total Protein CDM Collagen Gel .1/000(*) .00480 .000 1851 1549 Total Protein CDM Collagen Gel .15000(*) .04160 .002 .0190 .2810 Fibrin Gel 30000(*) .04160 .000 4310 1690 *CDM -3.15000(*) .04160 .000 32810 30190 **CDM -1.40000(*) .05095 .000 -1.5604 -1.2396 Collagen Gel CDM 15000(*) .04160 .000 5810 3190 **CDM 15000(*) .04160 .000 5810 3190 *CDM 155000(*) .04160 .000 5810 31690 *CDM 55000(*) .04160 .000 .5810 31690 **CDM -1.55000(*) .04160 .000 .5810 27190 **CDM CDM .30000(*) .04160 .000 .29810 -2.7190 *CDM CDM .1			Fibrin Gel	.00750	.00480	.545	0076	.0226
Iotal Protein CDM Conagen Ger 15000(*) 0.4160 0.022 0.1900 .2810 Fibrin Gel 30000(*) .04160 .000 4310 1690 *CDM -3.15000(*) .04160 .000 4310 1690 **CDM -1.40000(*) .05095 .000 -1.5604 -1.2396 Collagen Gel CDM 15000(*) .04160 .000 3810 3190 **CDM -1.40000(*) .05095 .000 -1.5604 -1.2396 Collagen Gel CDM 15000(*) .04160 .000 34310 31690 **CDM -1.55000(*) .04160 .000 34310 31690 **CDM -1.55000(*) .04160 .000 .1690 .4310 Collagen Gel .45000(*) .04160 .000 .29810 -2.7190 Collagen Gel .45000(*) .04160 .000 3.1690 3.4310 CDM CDM 3.15000(*) .04160 <td>Total Drotain</td> <td>CDM</td> <td>Collagon Gel</td> <td>17/000(*)</td> <td>.00480</td> <td>.000</td> <td>1851</td> <td>1549</td>	Total Drotain	CDM	Collagon Gel	17/000(*)	.00480	.000	1851	1549
Fibrin Gel 30000(*) .04160 .000 4310 1690 *CDM -3.15000(*) .04160 .000 -3.2810 -3.0190 **CDM -1.40000(*) .05095 .000 -1.5604 -1.2396 Collagen Gel CDM 15000(*) .04160 .002 2810 0190 Fibrin Gel 45000(*) .04160 .000 5810 3190 *CDM 330000(*) .04160 .000 5810 3190 *CDM 35000(*) .04160 .000 5810 3190 *CDM 155000(*) .05095 .000 -1.7104 -1.3896 Fibrin Gel CDM .30000(*) .04160 .000 .3190 .5810 Collagen Gel .45000(*) .04160 .000 .2.9810 -2.7190 *CDM -2.85000(*) .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 *CDM CDM .10000(*) .05095 .000 1.2604<	Total Protein	CDM		.15000(*)	.04160	.022	.0190	.2810
CDM -3.15000() .04160 .000 -3.2810 -3.0190 **CDM -1.40000(*) .05095 .000 -1.5604 -1.2396 Collagen Gel CDM 15000(*) .04160 .002 2810 0190 *CDM 15000(*) .04160 .000 5810 3190 *CDM -3.30000(*) .04160 .000 5810 3190 *CDM -3.30000(*) .04160 .000 34310 -3.1690 *CDM -1.55000(*) .05095 .000 -1.7104 -1.3896 Fibrin Gel CDM .30000(*) .04160 .000 .3190 .5810 Collagen Gel .45000(*) .04160 .000 .2.9810 -2.7190 *CDM CDM 2.85000(*) .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 *CDM CDM 3.3000(*) .04160 .000 2.7190 <td></td> <td></td> <td>Fibrin Gei</td> <td>30000(*)</td> <td>.04160</td> <td>.000</td> <td>4310</td> <td>1690</td>			Fibrin Gei	30000(*)	.04160	.000	4310	1690
**CDM -1.40000(*) .05095 .000 -1.5604 -1.2396 Collagen Gel CDM 15000(*) .04160 .022 2810 0190 *CDM -3.30000(*) .04160 .000 5810 3190 *CDM -3.30000(*) .04160 .000 -3.4310 -3.1690 *CDM -1.55000(*) .05095 .000 -1.7104 -1.3896 Fibrin Gel CDM .30000(*) .04160 .000 .3190 .5810 Collagen Gel .45000(*) .04160 .000 .1690 .4310 *CDM Collagen Gel .45000(*) .04160 .000 .2.9810 -2.7190 *CDM CDM .0200(*) .04160 .000 .2.9810 -2.7190 *CDM CDM .10000(*) .05095 .000 -1.2604 9396 *CDM CDM 3.15000(*) .04160 .000 3.1690 3.4310 Collagen Gel 3.3000(*) .04160 .000 3.1690 3.4310 *CDM Collagen Gel <			*CDM	-3.15000(*)	.04160	.000	-3.2810	-3.0190
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			**CDM	-1.40000(*)	.05095	.000	-1.5604	-1.2396
CDM -3.30000() .04160 .000 -3.4310 -3.1690 **CDM -1.55000(*) .05095 .000 -1.7104 -1.3896 Fibrin Gel CDM .30000(*) .04160 .000 .1690 .4310 Collagen Gel .45000(*) .04160 .000 .1690 .4310 Collagen Gel .45000(*) .04160 .000 .1690 .4310 *CDM .285000(*) .04160 .000 .2.9810 -2.7190 *CDM -2.85000(*) .04160 .000 .2.9810 -2.7190 *CDM -1.10000(*) .05095 .000 -1.2604 -9396 *CDM CDM 3.15000(*) .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 *CDM CDM 3.15000(*) .04160 .000 2.7190 2.9810 **CDM CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000		Collagen Gei	CDM Fibrin Gel	15000(*) 45000(*)	.04160	.022	2810	0190
**CDM -1.55000(*) .0505 .000 -1.7104 -1.3896 Fibrin Gel CDM .30000(*) .04160 .000 .1690 .4310 Collagen Gel .45000(*) .04160 .000 .3190 .5810 *CDM -2.85000(*) .04160 .000 -2.9810 -2.7190 *CDM -2.85000(*) .04160 .000 3.190 .5810 *CDM -1.10000(*) .05095 .000 -1.2604 -9396 *CDM CDM 3.1500(*) .04160 .000 3.0190 3.2810 *CDM CDM 3.15000(*) .04160 .000 3.0190 3.2810 *CDM COM S.1500(*) .04160 .000 3.0190 3.2810 *CDM COM S.1500(*) .04160 .000 3.1690 3.4310 *CDM Collagen Gel 3.30000(*) .04160 .000 2.7190 2.9810 **CDM CDM 1.40000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*			*CDM	-3 30000(*)	04160	000	-3 4310	-3 1690
Fibrin Gel CDM .30000(*) .04160 .000 .1.901 .1.9010 Fibrin Gel CDM .30000(*) .04160 .000 .1690 .4310 Collagen Gel .45000(*) .04160 .000 .3190 .5810 *CDM -2.85000(*) .04160 .000 -2.9810 -2.7190 *CDM CDM .05095 .000 -1.2604 9396 *CDM CDM 3.15000(*) .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 Collagen Gel 3.30000(*) .04160 .000 2.7190 2.9810 **CDM Collagen Gel 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.3896 1.7104 **CDM CDM 1.40000(*) .05095 .000 1.3896 1.7104 **CDM COM .000(*)			**CDM	-1 55000(*)	05095	.000	-1 7104	-1 3896
Collagen Gel 50000(*) .04160 .000 1010 *CDM -2.85000(*) .04160 .000 .2.9810 -2.7190 *CDM -2.85000(*) .04160 .000 -2.9810 -2.7190 *CDM -1.10000(*) .05095 .000 -1.2604 9396 *CDM CDM 3.15000(*) .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 Collagen Gel 3.30000(*) .04160 .000 2.7190 2.9810 **CDM Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 **CDM Collagen Gel 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 0500		Fibrin Gel	CDM	30000(*)	04160	.000	1690	4310
CDM -2.85000() .04160 .000 5170 1.5010 *CDM -2.85000(*) .04160 .000 -2.9810 -2.7190 *CDM -1.10000(*) .05095 .000 -1.2604 9396 *CDM CDM 3.15000(*) .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 Collagen Gel 3.30000(*) .04160 .000 2.7190 2.9810 **CDM Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 **CDM Collagen Gel 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 1.3896 1.2604 *CDM Collagen Gel 05000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM			Collagen Gel	45000(*)	04160	.000	3190	5810
**CDM -1.10000(*) .05005 .000 -1.2604 9396 *CDM CDM 3.15000(*) .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 Collagen Gel 3.30000(*) .04160 .000 2.7190 2.9810 **CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 1.3896 1.7104 Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) 0.7468 .960 2851 .1851			*CDM	-2 85000(*)	04160	.000	-2 9810	-2 7190
CDM CDM 3.15000() .04160 .000 3.0190 3.2810 Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 Fibrin Gel 2.85000(*) .04160 .000 2.7190 2.9810 **CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 1.3896 1.2604 *CDM Collagen Gel 1.5000(*) .05095 .000 1.3896 1.2604 *CDM Collagen Gel 1.0000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 05000 .07468 .960 -2851 .1851 Fibrin Gel 1.20000(*) 07468 .000 1.4351 .9649			**CDM	-1 10000(*)	05095	000	-1 2604	- 9396
Collagen Gel 3.30000(*) .04160 .000 3.1690 3.4310 Fibrin Gel 2.85000(*) .04160 .000 2.7190 2.9810 **CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 1.3896 1.7104 KCDM -1.75000(*) .05095 .000 -1.3896 1.2604 Cell Number CDM Collagen Gel 05000 .07468 .960 -2.851 .1851 Fibrin Gel 1.20000(*) 0.7468 .960 -2.851 .1851		*CDM	CDM	3.15000(*)	.04160	.000	3.0190	3.2810
Fibrin Gel 2.85000(*) .04160 .000 2.7190 2.9810 **CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.0000(*) .05095 .000 1.3896 1.2604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.2604 *CDM Collagen Gel 1.10000(*) .05095 .000 -1.3896 1.2604 *CDM Collagen Gel -0.5000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) 07468 .000 1.4351 .9649			Collagen Gel	3.30000(*)	.04160	.000	3.1690	3.4310
**CDM 1.75000(*) .05095 .000 1.5896 1.9104 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 **CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 .9396 1.2604 *CDM -1.75000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) .07468 .000 1.4351 .9649			Fibrin Gel	2.85000(*)	.04160	.000	2.7190	2.9810
**CDM CDM 1.40000(*) .05095 .000 1.2396 1.5604 Collagen Gel 1.55000(*) .05095 .000 1.2396 1.5604 Fibrin Gel 1.55000(*) .05095 .000 1.3896 1.7104 *CDM *CDM 1.10000(*) .05095 .000 .9396 1.2604 *CDM *CDM -1.75000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) 07468 .000 1.4351 .9649			**CDM	1 75000(*)	05095	000	1 5896	1 9104
Collagen Gel 1.0000(*) .05095 .000 1.2596 1.0001 Collagen Gel 1.55000(*) .05095 .000 1.3896 1.7104 Fibrin Gel 1.10000(*) .05095 .000 .9396 1.2604 *CDM -1.75000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) 07468 .000 1.4351 .9649		**CDM	CDM	1 40000(*)	05095	000	1 2396	1 5604
Fibrin Gel 1.10000(*) .05095 .000 .9396 1.2604 *CDM -1.75000(*) .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) 07468 .000 1.4351 .9649			Collagen Gel	1.55000(*)	.05095	.000	1.3896	1.7104
CDM -1.75000() .05095 .000 -1.9104 -1.5896 Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) 07468 .000 1.4351 .9649			Fibrin Gel	1.10000(*)	.05095	.000	.9396	1.2604
Cell Number CDM Collagen Gel 05000 .07468 .960 2851 .1851 Fibrin Gel 1.20000(*) 07468 000 1.4351 9649			*CDM	-1.75000(*)	.05095	.000	-1.9104	-1.5896
Fibrin Gel 1 20000(*) 07468 000 1 4351 9649	Cell Number	CDM	Collagen Gel	05000	.07468	.960	2851	.1851
-1.20000(1) $.07408$ $.000$ -1.4551 9049			Fibrin Gel	-1.20000(*)	.07468	.000	-1.4351	9649

Tukey HSD Post Hoc

(* The mean difference is significant at the .05 level.)

	CDM	-3.35000()	.07468	.000	-3.5851	-3.1149
	**CDM	80000(*)	.09146	.000	-1.0880	5120
Collagen Gel	CDM	.05000	.07468	.960	1851	.2851
	Fibrin Gel	-1.15000(*)	.07468	.000	-1.3851	9149
	CDM	-3.30000()	.07468	.000	-3.5351	-3.0649
	**CDM	75000(*)	.09146	.000	-1.0380	4620
Fibrin Gel	CDM	1.20000(*)	.07468	.000	.9649	1.4351
	Collagen Gel	1.15000(*)	.07468	.000	.9149	1.3851
	CDM	-2.15000()	.07468	.000	-2.3851	-1.9149
	**CDM	.40000(*)	.09146	.006	.1120	.6880
CDM	CDM	3.35000()	.07468	.000	3.1149	3.5851
	Collagen Gel	3.30000(*)	.07468	.000	3.0649	3.5351
	Fibrin Gel	2.15000(*)	.07468	.000	1.9149	2.3851
	**CDM	2.55000(*)	.09146	.000	2.2620	2.8380
**CDM	CDM	.80000(*)	.09146	.000	.5120	1.0880
	Collagen Gel	.75000(*)	.09146	.000	.4620	1.0380
	Fibrin Gel	40000(*)	.09146	.006	6880	1120
	CDM	-2.55000()	.09146	.000	-2.8380	-2.2620
Tension CDM	Collagen Gel	14.00000(*)	2.71401	.002	5.2228	22.7772
	Fibrin Gel	-1.07500	2.71401	.994	-9.8522	7.7022
	CDM	-96.33333()	2.90140	.000	-105.7165	-86.9501
	**CDM	-128.95000(*)	3.24387	.000	-139.4407	-118.4593
Collagen Gel	CDM	-14.00000(*)	2.71401	.002	-22.7772	-5.2228
	Fibrin Gel	-15.07500(*)	2.51269	.001	-23.2011	-6.9489
	CDM	-110.33333()	2.71401	.000	-119.1105	-101.5562
	**CDM	-142.95000(*)	3.07740	.000	-152.9024	-132.9976
Fibrin Gel	CDM Callagan Cal	1.07500	2.71401	.994	-7.7022	9.8522
		15.0/500(*)	2.51269	.001	6.9489	23.2011
	**CDM	-95.25833(*)	2.71401	.000	-104.0355	-86.4812
*0014	**CDM	-127.87500(*)	3.07740	.000	-137.8274	-117.9226
CDM	CDM	96.33333()	2.90140	.000	86.9501	105.7165
	Collagen Gel	110.33333(*)	2.71401	.000	101.5562	119.1105
	Fibrin Gel	95.25833(*) 32.61667(*)	2.71401	.000	86.4812	104.0355
**CDM	CDM	128 95000(*)	3 24387	.000	118 4593	139 4407
	Collagen Gel	142 95000(*)	3 07740	.000	132 9976	152 9024
	Fibrin Gel	127 87500(*)	3 07740	.000	117 9226	137 8274
	CDM	32 61667()	3 24387	.000	22 1259	43 1074
UTS CDM	Collagen Gel	54 72500	19 91175	109	-9.6700	119 1200
	Fibrin Gel	89 97500(*)	19.91175	006	25 5800	154 3700
	CDM	-91.30000()	21.28656	.009	-160.1412	-22.4588
	**CDM	-473.95000(*)	23.79910	.000	-550.9168	-396.9832
Collagen Gel	CDM	-54.72500	19.91175	.109	-119.1200	9.6700
	Fibrin Gel	35.25000	18.43470	.366	-24.3682	94.8682
	CDM	-146.02500()	19.91175	.000	-210.4200	-81.6300
	**CDM	-528.67500(*)	22.57780	.000	-601.6921	-455.6579
Fibrin Gel	CDM	-89.97500(*)	19.91175	.006	-154.3700	-25.5800
	Collagen Gel	-35.25000	18.43470	.366	-94.8682	24.3682
	CDM	-181.27500()	19.91175	.000	-245.6700	-116.8800

		**CDM	-563.92500(*)	22.57780	.000	-636.9421	-490.9079
	CDM	CDM	91.30000()	21.28656	.009	22.4588	160.1412
		Collagen Gel	146.02500(*)	19.91175	.000	81.6300	210.4200
		Fibrin Gel	181.27500(*)	19.91175	.000	116.8800	245.6700
		**CDM	-382.65000(*)	23.79910	.000	-459.6168	-305.6832
	**CDM	CDM	473.95000(*)	23.79910	.000	396.9832	550.9168
		Collagen Gel	528.67500(*)	22.57780	.000	455.6579	601.6921
		Fibrin Gel	563.92500(*)	22.57780	.000	490.9079	636.9421
		CDM	382.65000()	23.79910	.000	305.6832	459.6168
Failure Strain	CDM	Collagen Gel	.04667	.02486	.382	0337	.1271
		Fibrin Gel	03083	.02486	.730	1112	.0496
		CDM	16000()	.02658	.001	2460	0740
		**CDM	13833(*)	.02972	.005	2344	0422
	Collagen Gel	CDM	04667	.02486	.382	1271	.0337
		Fibrin Gel	07750(*)	.02302	.040	1519	0031
		CDM	20667()	.02486	.000	2871	1263
		**CDM	18500(*)	.02819	.000	2762	0938
	Fibrin Gel	CDM	.03083	.02486	.730	0496	.1112
		Collagen Gel	.07750(*)	.02302	.040	.0031	.1519
		CDM	12917()	.02486	.002	2096	0488
		**CDM	10750(*)	.02819	.019	1987	0163
	CDM	CDM	.16000()	.02658	.001	.0740	.2460
		Collagen Gel	.20667(*)	.02486	.000	.1263	.2871
		Fibrin Gel	.12917(*)	.02486	.002	.0488	.2096
		**CDM	.02167	.02972	.945	0744	.1178
	**CDM	CDM	.13833(*)	.02972	.005	.0422	.2344
		Collagen Gel	.18500(*)	.02819	.000	.0938	.2762
		Fibrin Gel	.10750(*)	.02819	.019	.0163	.1987
Total Callagan	CDM		0216/	.02972	.945	11/8	.0744
Total Collagen	CDM	Eibrin Cal	13500(*)	.02323	.000	2081	0619
			.34/50(*)	.02323	.000	.2744	.4206
		CDM	54500()	.02323	.000	6181	4719
		**CDM	92000(*)	.02845	.000	-1.0096	8304
	Collagen Gel	CDM Fibrin Gel	.13500(*) 48250(*)	.02323	.000	.0619 4094	.2081
		CDM	41000()	.02323	.000	4831	3369
		**CDM	78500(*)	.02845	.000	- 8746	- 6954
	Fibrin Gel	CDM	- 34750(*)	02323	000	- 4206	- 2744
		Collagen Gel	- 48250(*)	02323	000	- 5556	- 4094
		CDM	- 89250()	02323	000	- 9656	- 8194
		**CDM	-1.26750(*)	.02845	.000	-1.3571	-1.1779
	CDM	CDM	.54500()	.02323	.000	.4719	.6181
		Collagen Gel	.41000(*)	.02323	.000	.3369	.4831
		Fibrin Gel	.89250(*)	.02323	.000	.8194	.9656
		**CDM	37500(*)	.02845	.000	4646	2854
	**CDM	CDM	.92000(*)	.02845	.000	.8304	1.0096
		Collagen Gel	.78500(*)	.02845	.000	.6954	.8746
		Fibrin Gel	1.26750(*)	.02845	.000	1.1779	1.3571
		CDM	.37500()	.02845	.000	.2854	.4646

Percent Collagen	CDM	Collagen Gel	-23.52500(*)	.67168	.000	-25.6399	-21.4101
		Fibrin Gel	36.02500(*)	.67168	.000	33.9101	38.1399
		CDM	36.45000()	.67168	.000	34.3351	38.5649
		**CDM	1.30000	.82264	.534	-1.2902	3.8902
	Collagen Gel	CDM	23.52500(*)	.67168	.000	21.4101	25.6399
		Fibrin Gel	59.55000(*)	.67168	.000	57.4351	61.6649
		CDM	59.97500()	.67168	.000	57.8601	62.0899
		**CDM	24.82500(*)	.82264	.000	22.2348	27.4152
	Fibrin Gel	CDM	-36 02500(*)	67168	000	-38 1399	-33 9101
		Collagen Gel	-59.55000(*)	.67168	.000	-61.6649	-57.4351
		*ČDM	.42500	.67168	.967	-1.6899	2.5399
		**CDM	-34.72500(*)	.82264	.000	-37.3152	-32.1348
	CDM	CDM	-36.45000()	.67168	.000	-38.5649	-34.3351
		Collagen Gel	-59.97500(*)	.67168	.000	-62.0899	-57.8601
		Fibrin Gel	42500	.67168	.967	-2.5399	1.6899
		**CDM	-35.15000(*)	.82264	.000	-37.7402	-32.5598
	**CDM	CDM	-1.30000	.82264	.534	-3.8902	1.2902
		Collagen Gel	-24.82500(*)	.82264	.000	-27.4152	-22.2348
		Fibrin Gel	34.72500(*)	.82264	.000	32.1348	37.3152
		CDM	35.15000()	.82264	.000	32.5598	37.7402
Non-Acid and Pepsin Extractable Eraction	CDM	Collagen Gel	.80000(*)	.17041	.003	.2634	1.3366
Extractable Fraction		Fibrin Gel	1.02500(*)	.17041	.000	.4884	1.5616
		CDM	-10.47500()	.17041	.000	-11.0116	-9.9384
		**CDM	-10.77500(*)	.20870	.000	-11.4321	-10.1179
	Collagen Gel	CDM	80000(*)	.17041	.003	-1.3366	2634
		Fibrin Gel	.22500	.17041	.684	3116	.7616
		CDM	-11.27500()	.17041	.000	-11.8116	-10.7384
		**CDM	-11.57500(*)	.20870	.000	-12.2321	-10.9179
	Fibrin Gel	CDM	-1.02500(*)	.17041	.000	-1.5616	4884
		Collagen Gel	22500	.17041	.684	7616	.3116
		CDM	-11.50000()	.17041	.000	-12.0366	-10.9634
		**CDM	-11.80000(*)	.20870	.000	-12.4571	-11.1429
	CDM	CDM	10.47500()	.17041	.000	9.9384	11.0116
		Collagen Gel	11.27500(*)	17041	.000	10.7384	11.8116
		Fibrin Gel	11.50000(*)	.17041	.000	10.9634	12.0366
		**CDM	30000	.20870	.616	9571	.3571
	**CDM	CDM	10.77500(*)	.20870	.000	10.1179	11.4321
		Collagen Gel	11.57500(*)	.20870	.000	10.9179	12.2321
		Fibrin Gel	11.80000(*)	.20870	.000	11.1429	12.4571
		*CDM	.30000	.20870	.616	3571	.9571
Total Proteoglycans and	CDM	Collagen Gel	-7.10000(*)	.47139	.000	-8.5843	-5.6157
Grycosunnogrycuns		Fibrin Gel	-14.02500(*)	.47139	.000	-15.5093	-12.5407
		CDM	-32.95000()	.47139	.000	-34.4343	-31.4657
		**CDM	-7.02500(*)	.57734	.000	-8.8428	-5.2072
	Collagen Gel	CDM	7.10000(*)	.47139	.000	5.6157	8.5843
		Fibrin Gel	-6.92500(*)	.47139	.000	-8,4093	-5.4407
		CDM	-25 85000()	47139	000	-27 3343	-24 3657
		**CDM	.07500	.57734	1.000	-1.7428	1.8928
					1	1	1

	Fibrin Gel	CDM	14.02500(*)	.47139	.000	12.5407	15.5093
		Collagen Gel	6.92500(*)	.47139	.000	5.4407	8.4093
		CDM	-18.92500()	.47139	.000	-20.4093	-17.4407
		**CDM	7.00000(*)	.57734	.000	5.1822	8.8178
	CDM	CDM	32,95000()	47139	000	31 4657	34 4343
		Collagen Gel	25 85000(*)	47139	000	24 3657	27 3343
		Fibrin Gel	18.92500(*)	.47139	.000	17.4407	20.4093
		**CDM	25.92500(*)	57734	.000	24.1072	27.7428
	**CDM	CDM	7 02500(*)	57734	000	5 2072	8 8428
		Collagen Gel	- 07500	57734	1 000	-1 8928	1 7428
		Fibrin Gel	7.00000(*)	57734	000	-1.0520 9.9179	5 1822
		CDM	-25 92500()	57734	000	-27 7428	-24 1072
Percent Proteoglycans	CDM	Collagen Gel	1.07500(*)	07522	.000	1 21 22	0270
and Glycosaminoglycans			-1.07500(*)	.07532	.000	-1.3122	83/8
		Fibrin Gel	35000(*)	.07532	.003	5872	1128
		CDM	1.05000()	.07532	.000	.8128	1.2872
		**CDM	1.07500(*)	.09225	.000	.7845	1.3655
	Collagen Gel	CDM	1.07500(*)	.07532	.000	.8378	1.3122
		Fibrin Gel	.72500(*)	.07532	.000	.4878	.9622
		CDM	2.12500()	.07532	.000	1.8878	2.3622
		**CDM	2.15000(*)	.09225	.000	1.8595	2.4405
	Fibrin Gel	CDM	.35000(*)	.07532	.003	.1128	.5872
		Collagen Gel	72500(*)	.07532	.000	9622	4878
		CDM	1.40000()	.07532	.000	1.1628	1.6372
		**CDM	1.42500(*)	.09225	.000	1.1345	1.7155
	CDM	CDM	-1.05000()	.07532	.000	-1.2872	8128
		Collagen Gel	-2.12500(*)	.07532	.000	-2.3622	-1.8878
		Fibrin Gel	-1.40000(*)	.07532	.000	-1.6372	-1.1628
		**CDM	.02500	.09225	.999	2655	.3155
	**CDM	CDM	-1.07500(*)	.09225	.000	-1.3655	7845
		Collagen Gel	-2.15000(*)	09225	000	-2,4405	-1 8595
		Fibrin Gel	-1.42500(*)	.09225	.000	-1.7155	-1.1345
		*CDM	02500	.09225	.999	3155	.2655
UTS per Collagen Density	CDM	Collagen Gel	8.04167(*)	1.33789	.001	3.7149	12.3684
		Fibrin Gel	-11.35833(*)	1.33789	.000	-15.6851	-7.0316
		CDM	-25.80000()	1.43026	.000	-30.4255	-21.1745
		**CDM	-25.48333(*)	1.59908	.000	-30.6548	-20.3119
	Collagen Gel	CDM	-8.04167(*)	1.33789	.001	-12.3684	-3.7149
		Fibrin Gel	-19.40000(*)	1.23865	.000	-23.4058	-15.3942
		CDM	-33.84167()	1.33789	.000	-38.1684	-29.5149
		**CDM	-33.52500(*)	1.51702	.000	-38.4311	-28.6189
	Fibrin Gel	CDM	11.35833(*)	1.33789	.000	7.0316	15.6851
		Collagen Gel	19.40000(*)	1.23865	.000	15.3942	23.4058
		CDM	-14.44167()	1.33789	.000	-18.7684	-10.1149
	4.000	**CDM	-14.12500(*)	1.51702	.000	-19.0311	-9.2189
	CDM	CDM	25.80000()	1.43026	.000	21.1745	30.4255
		Collagen Gel	33.84167(*)	1.33789	.000	29.5149	38.1684
		Fibrin Gel	14.44167(*)	1.33789	.000	10.1149	18.7684
		**CDM	.31667	1.59908	1.000	-4.8548	5.4881

	**CDM	CDM	25.48333(*)	1.59908	.000	20.3119	30.6548
		Collagen Gel	33.52500(*)	1.51702	.000	28.6189	38.4311
		Fibrin Gel	14.12500(*)	1.51702	.000	9.2189	19.0311
		*CDM	31667	1.59908	1.000	-5.4881	4.8548
4	T1	0511		1		1	

* The mean difference is significant at the .05 level.

Appendix 6: Arrangement of Collagen in Cell-Derived Matrices

The collagen in the cell-derived matrices organized into several layers of alternating alignment where fibers were parallel to each other within layers, but at right angles to adjacent fibers in layers.

